HOME





Urelements
In set theory, a branch of mathematics, an urelement or ur-element (from the German prefix ''ur-'', 'primordial') is an object that is not a set (has no elements), but that may be an element of a set. It is also referred to as an atom or individual. Ur-elements are also not identical with the empty set. Theory There are several different but essentially equivalent ways to treat urelements in a first-order theory. One way is to work in a first-order theory with two sorts, sets and urelements, with ''a'' ∈ ''b'' only defined when ''b'' is a set. In this case, if ''U'' is an urelement, it makes no sense to say X \in U, although U \in X is perfectly legitimate. Another way is to work in a one-sorted theory with a unary relation used to distinguish sets and urelements. As non-empty sets contain members while urelements do not, the unary relation is only needed to distinguish the empty set from urelements. Note that in this case, the axiom of extensionality must be formulated t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


New Foundations
In mathematical logic, New Foundations (NF) is a non-well-founded, finitely axiomatizable set theory conceived by Willard Van Orman Quine as a simplification of the theory of types of ''Principia Mathematica''. Definition The well-formed formulas of NF are the standard formulas of propositional calculus with two primitive predicates equality (=) and membership (\in). NF can be presented with only two axiom schemata: * Extensionality: Two objects with the same elements are the same object; formally, given any set ''A'' and any set ''B'', if for every set ''X'', ''X'' is a member of ''A'' if and only if ''X'' is a member of ''B'', then ''A'' is equal to ''B''. * A restricted axiom schema of comprehension: \ exists for each stratified formula \phi. A formula \phi is said to be ''stratified'' if there exists a function ''f'' from pieces of \phi's syntax to the natural numbers, such that for any atomic subformula x \in y of \phi we have ''f''(''y'') = ''f''(''x'') + 1, whil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kripke–Platek Set Theory With Urelements
The Kripke–Platek set theory with urelements (KPU) is an axiom system for set theory with urelements, based on the traditional (urelement-free) Kripke–Platek set theory. It is considerably weaker than the (relatively) familiar system ZFU. The purpose of allowing urelements is to allow large or high-complexity objects (such as the set of all reals) to be included in the theory's transitive models without disrupting the usual well-ordering and recursion-theoretic properties of the constructible universe; KP is so weak that this is hard to do by traditional means. Preliminaries The usual way of stating the axioms presumes a two sorted first order language L^* with a single binary relation symbol \in. Letters of the sort p,q,r,... designate urelements, of which there may be none, whereas letters of the sort a,b,c,... designate sets. The letters x,y,z,... may denote both sets and urelements. The letters for sets may appear on both sides of \in, while those for urelements may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zermelo Set Theory
Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text (translated into English) and original numbering. The axioms of Zermelo set theory The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set. Later versions of set theory often assume that all objects are sets so there are no urelements and there is no need for the unary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Axiom Of Regularity
In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every Empty set, non-empty Set (mathematics), set ''A'' contains an element that is Disjoint sets, disjoint from ''A''. In first-order logic, the axiom reads: \forall x\,(x \neq \varnothing \rightarrow (\exists y \in x) (y \cap x = \varnothing)). The axiom of regularity together with the axiom of pairing implies that Russell paradox, no set is an element of itself, and that there is no infinite sequence (a_n) such that a_ is an element of a_i for all i. With the axiom of dependent choice (which is a weakened form of the axiom of choice), this result can be reversed: if there are no such infinite sequences, then the axiom of regularity is true. Hence, in this context the axiom of regularity is equivalent to the sentence that there are no downward infinite membership chains. The axiom was originally formulated by von Neumann; it was adopted in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets (S_i as a nonempty set indexed with i), there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. The axiom of choice is equivalent to the statement that every partition has a transversal. In many cases, a set created by choosing elements can be made without invoking the axiom of choice, particularly if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available — some distinguishing property that happens to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Extensionality
The axiom of extensionality, also called the axiom of extent, is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. The axiom defines what a Set (mathematics), set is. Informally, the axiom means that the two set (mathematics), sets ''A'' and ''B'' are equal if and only if ''A'' and ''B'' have the same members. Etymology The term ''extensionality'', as used in '''Axiom of Extensionality has its roots in logic. An intensional definition describes the necessary and sufficient conditions for a term to apply to an object. For example: "An even number is an integer which is divisible by 2." An extensional definition instead lists all objects where the term applies. For example: "An even number is any one of the following integers: 0, 2, 4, 6, 8..., -2, -4, -6, -8..." In logic, the Extension (logic), extension of a Predicate (mathematical logic), predicate is the set of all things for which the predicate is true. The logical term was introduce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consistency
In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when there is no formula \varphi such that \varphi \in \langle A \rangle and \lnot \varphi \in \langle A \rangle. A ''trivial'' theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Theory
In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that have been proposed as foundations are: * Typed λ-calculus of Alonzo Church * Intuitionistic type theory of Per Martin-Löf Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid paradoxes in naive set theory and formal logic, such as Russell's paradox which demonstrates that, without proper axioms, it is possible to define the set of all sets that are not members of themselves; this set both contains itself and does not contain itself. Between 1902 and 1908, Bertrand Russell proposed various solutions to this problem. By 1908, Russell arrive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Equiconsistency
In mathematical logic, two theory (mathematical logic), theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and Vice-versa, vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory ''T''. Instead we usually take a theory ''S'', believed to be consistent, and try to prove the weaker statement that if ''S'' is consistent then ''T'' must also be consistent—if we can do this we say that ''T'' is ''consistent relative to S''. If ''S'' is also consistent relative to ''T'' then we say that ''S'' and ''T'' are equiconsistent. Consistency In mathematical logic, formal theories are studied as mathematical objects. Since some theories are powerful enough to model different mathematical objects, it is natural to wonder about their own consistency. David Hilbert, Hilbert proposed a Hilbert's program, program at the beginning of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peano Arithmetic
In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete. The axiomatization of arithmetic provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing arithmetic was not well appreciated until the work of Hermann Grassmann, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881, Charles Sanders Peirce provided an axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]