HOME





Unit Demand
In economics, a unit demand agent is an agent who wants to buy a single item, which may be of one of different types. A typical example is a buyer who needs a new car. There are many different types of cars, but usually a buyer will choose only one of them, based on the quality and the price. If there are ''m'' different item-types, then a unit-demand valuation function is typically represented by ''m'' values v_1,\dots,v_m, with v_j representing the subjective value that the agent derives from item j. If the agent receives a set A of items, then his total utility is given by: :u(A)=\max_v_j since he enjoys the most valuable item from A and ignores the rest. Therefore, if the price of item j is p_j, then a unit-demand buyer will typically want to buy a single item – the item j for which the net utility v_j - p_j is maximized. Ordinal and cardinal definitions A unit-demand valuation is formally defined by: * For a preference relation: for every set B there is a subset A\subsete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Economics
Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interactions of Agent (economics), economic agents and how economy, economies work. Microeconomics analyses what is viewed as basic elements within economy, economies, including individual agents and market (economics), markets, their interactions, and the outcomes of interactions. Individual agents may include, for example, households, firms, buyers, and sellers. Macroeconomics analyses economies as systems where production, distribution, consumption, savings, and Expenditure, investment expenditure interact; and the factors of production affecting them, such as: Labour (human activity), labour, Capital (economics), capital, Land (economics), land, and Entrepreneurship, enterprise, inflation, economic growth, and public policies that impact gloss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Submodular Set Function
In mathematics, a submodular set function (also known as a submodular function) is a set function that, informally, describes the relationship between a set of inputs and an output, where adding more of one input has a decreasing additional benefit ( diminishing returns). The natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks. Recently, submodular functions have also found utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains. Definition If \Omega is a finite set, a submodular function is a set function f:2^\rightarrow \mathbb, where 2^\Omega denotes the power set of \Omega, which satisfies one of the following equivalent condit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Substitute Goods
In microeconomics, substitute goods are two goods that can be used for the same purpose by consumers. That is, a consumer perceives both goods as similar or comparable, so that having more of one good causes the consumer to desire less of the other good. Contrary to complementary goods and independent goods, substitute goods may replace each other in use due to changing economic conditions. An example of substitute goods is Coca-Cola and Pepsi; the interchangeable aspect of these goods is due to the similarity of the purpose they serve, i.e. fulfilling customers' desire for a soft drink. These types of substitutes can be referred to as close substitutes. Substitute goods are commodity which the consumer demanded to be used in place of another good. Economic theory describes two goods as being close substitutes if three conditions hold: # products have the same or similar performance characteristics # products have the same or similar occasion for use and # products are sold in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Utility Functions On Indivisible Goods
Some branches of economics and game theory deal with indivisible goods, discrete items that can be traded only as a whole. For example, in combinatorial auctions there is a finite set of items, and every agent can buy a subset of the items, but an item cannot be divided among two or more agents. It is usually assumed that every agent assigns subjective utility to every subset of the items. This can be represented in one of two ways: * An ordinal utility preference relation, usually marked by \succ. The fact that an agent prefers a set A to a set B is written A \succ B. If the agent only weakly prefers A (i.e. either prefers A or is indifferent between A and B) then this is written A \succeq B. * A cardinal utility function, usually denoted by u. The utility an agent gets from a set A is written u(A). Cardinal utility functions are often normalized such that u(\emptyset)=0, where \emptyset is the empty set. A cardinal utility function implies a preference relation: u(A)>u(B) implies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matching (graph Theory)
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected Graph (discrete mathematics), graph is a set of Edge (graph theory), edges without common vertex (graph theory), vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a Flow network, network flow problem. Definitions Given a Graph (discrete mathematics), graph a matching ''M'' in ''G'' is a set of pairwise non-adjacent edges, none of which are loop (graph theory), loops; that is, no two edges share common vertices. A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated). A maximal matching is a matching ''M'' of a graph ''G'' that is not a subset of any other matching. A matching ''M'' of a graph ''G'' is maximal if every edge in ''G'' has a non-empty intersectio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]