HOME





Ultrawideband
Ultra-wideband (UWB, ultra wideband, ultra-wide band and ultraband) is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precise locating, and tracking. UWB support started to appear in high-end smartphones in 2019. Characteristics Ultra-wideband is a technology for transmitting information across a wide bandwidth (>500 MHz). This allows for the transmission of a large amount of signal energy without interfering with conventional narrowband and carrier wave transmission in the same frequency band. Regulatory limits in many countries allow for this efficient use of radio bandwidth, and enable high-data-rate personal area network (PAN) wireless connectivity, longer-range low-data-rate applications, and the transparent co-existence of radar and imaging systems wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FiRa Consortium
The FiRa Consortium (FiRa"fine ranging") is a non-profit organization that promotes the use of ultra-wideband technology for use cases such as access control, location-based services, and device-to-device services. UWB offers fine ranging and secure capabilities and operates in the available spectrum. Founded on August 1, 2019, by ASSA ABLOY, Bosch, HID Global, NXP Semiconductors, and Samsung, the consortium aims to certify UWB products for conformity to defined standards of interoperability. In June 2020, the FiRa Consortium and the UWB Alliance announced their formal liaison to "accelerate the development and adoption of UWB technology". Association with IEEE 802.15.4 The FiRa Consortium builds on to the IEEE 802.15.4/4z and future iterations and enhancements High Rate PHY (HRP) with an interoperable HRP standard that includes performance requirements, test methods and procedures, and a certification program based on the IEEE’s profiled features. An additional application l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BoomSAR
The boomSAR is a mobile ultra-wideband synthetic aperture radar (UWB SAR) system designed by the U.S. Army Research Laboratory (ARL) in the mid-1990s to detect buried landmines and IEDs. Mounted atop a 45-meter telescoping boom on a stable moving vehicle, the boomSAR transmits low frequency (50 to 1100 MHz) short-pulse UWB signals over the side of the vehicle to scope out a 300-meter range area starting 50 meters from the base of the boom. It travels at an approximate rate of 1 km/hour and requires a relatively flat road that is wide enough to accommodate its 18 ft-wide base. Characteristics The boomSAR is a fully polarimetric system that transmits and receives low-frequency waveforms with over 1 gigahertz of usable bandwidth, covering a spectrum from approximately 40 MHz to 1 GHz. Its testbed radar subsystems consist of the antennae, the transmitter, the analog-to-digital (A/D) converter, the processor/data storage system, the timing and control assemb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RailSAR
The railSAR, also known as the ultra-wideband Foliage Penetration Synthetic Aperture Radar (UWB FOPEN SAR), is a rail-guided, low-frequency impulse radar system that can detect and discern target objects hidden behind foliage. It was designed and developed by the U.S. Army Research Laboratory (ARL) in the early 1990s in order to demonstrate the capabilities of an airborne SAR for foliage and ground penetration. However, since conducting accurate, repeatable measurements on an airborne platform was both challenging and expensive, the railSAR was built on the rooftop of a four-story building within the Army Research Laboratory compound along a 104-meter laser-leveled track. At the time, the railSAR fell into the highest category of UWB radar systems, operating across a 950 MHz-wide band from 40 MHz to 1 GHz on a pulse strength of 2.5 megawatts. It provided fully polarimetric, high resolution radar data and possessed 185% bandwidth compared to other radar systems th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonal Frequency-division Multiplexing
In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/ 5G mobile communications. OFDM is a frequency-division multiplexing (FDM) scheme that was introduced by Robert W. Chang of Bell Labs in 1966. In OFDM, the incoming bitstream representing the data to be sent is divided into multiple streams. Multiple closely spaced orthogonal subcarrier signals with overlapping spectra are transmitted, with each carrier modulated with bits from the incoming stream so multiple bits are being transmitted in parallel.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radio Technology
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves. They can be received by other antennas connected to a radio receiver; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking, and satellite communication, among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like ai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AirTags
AirTag is a tracking device developed by Apple Inc., Apple. AirTag is designed to act as a key finder, which helps people find personal objects such as keys, bags, apparel, small electronic devices and vehicles. To locate lost or stolen items, AirTags use Apple's crowdsourced Find My network, estimated in early 2021 to consist of approximately one billion devices worldwide that detect and anonymously report emitted Bluetooth signals. AirTags are compatible with any iPhone, iPad, or iPod Touch device capable of running iOS/iPadOS 14.5 or later, including All iPhone models, iPhone 6S or later (including IPhone SE (1st generation), iPhone SE 1, IPhone SE (2nd generation), 2 and iPhone SE (3rd generation), 3). Using the built-in Apple U1, U1 chip on All iPhone models, iPhone 11 or later (except iPhone SE and iPhone 16e models), users can more precisely locate items using ultra-wideband (UWB) technology. AirTag was announced on April 20, 2021, made available for pre-order on April 23, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous-wave Radar
Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency. Doppler-analysis of radar returns can allow the filtering out of slow or non-moving objects, thus offering immunity to interference from large stationary objects and slow-moving clutter. This makes it particularly useful for looking for objects against a background reflector, for instance, allowing a high-flying aircraft to look for aircraft flying at low altitudes against the background of the surface. Because the very strong reflection off the surface can be filtered out, the much smaller reflection from a target can still be seen. CW radar systems are used at both ends of the ran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doppler Radar
A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc. Concept Doppler effect The Doppler effect (or Doppler shift), named after Austrian physicist Christian Doppler who proposed it in 1842, is the difference between the observed frequency and the emitted frequency of a wave for an observer moving relative to the source of the waves. It is commonly heard when a vehicle sounding a siren approaches, passes and recedes from an observer. The received frequency is higher (compared to the emitted frequency) during ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matched Filter
In signal processing, the output of the matched filter is given by correlating a known delayed signal, or ''template'', with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template. The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in the presence of additive stochastic noise. Matched filters are commonly used in radar, in which a known signal is sent out, and the reflected signal is examined for common elements of the out-going signal. Pulse compression is an example of matched filtering. It is so called because the impulse response is matched to input pulse signals. Two-dimensional matched filters are commonly used in image processing, e.g., to improve the SNR of X-ray observations. Additional applications of note are in seismology and gravitational-wave astronomy. Matched filtering is a demodulation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SAFIRE Radar
The Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar is a vehicle-mounted, forward-looking ground-penetrating radar (FLGPR) system designed to detect buried or hidden explosive hazards. It was developed by the U.S. Army Research Laboratory (ARL) in 2016 as part of a long generation of ultra-wideband (UWB) and synthetic aperture radar (SAR) systems created to combat buried landmines and IEDs. Past iterations include the railSAR, the boomSAR, and the SIRE radar. Development The SAFIRE radar was initially conceived as a response to the increasing congestion of the radio frequency (RF) spectrum due to the recent growth of wireless technology. As part of an effort to improve upon the existing SIRE radar system, the U.S. Army Research Laboratory designed the SAFIRE radar as a UWB radar that could match or exceed the performance of the SIRE radar while operating in congested RF environments. Instead of impulse UWB, it was fitted with a stepped-frequency desi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIRE Radar
The Synchronous Impulse Reconstruction (SIRE) radar is a multiple-input, multiple-output (MIMO) radar system designed to detect landmines and improvised explosive devices (IEDs). It consists of a low frequency, impulse-based ultra-wideband (UWB) radar that uses 16 receivers with 2 transmitters at the ends of the 2 meter-wide receive array that send alternating, orthogonal waveforms into the ground and return signals reflected from targets in a given area. The SIRE radar system comes mounted on top of a vehicle and receives signals that form images that uncover up to 33 meters in the direction that the transmitters are facing. It is able to collect and process data as part of an affordable and lightweight package due to slow (40 MHz) yet inexpensive analog-to-digital (A/D) converters that sample the wide bandwidth of radar signals. It uses a GPS and Augmented Reality (AR) technology in conjunction with camera to create a live video stream with a more comprehensive visual dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

United States Army Research Laboratory
The U.S. Army Combat Capabilities Development Command Army Research Laboratory (DEVCOM ARL) is the foundational research laboratory for the United States Army under the United States Army Futures Command (AFC). DEVCOM ARL conducts intramural and extramural research guided by 11 Army competencies: Biological and Biotechnology Sciences; Humans in Complex Systems; Photonics, Electronics, and Quantum Sciences; Electromagnetic Spectrum Sciences; Mechanical Sciences; Sciences of Extreme Materials; Energy Sciences; Military Information Sciences; Terminal Effects; Network, Cyber, and Computational Sciences; and Weapons Sciences. The laboratory was established in 1992 to unify the activities of the seven corporate laboratories of the U.S. Army Laboratory Command (LABCOM) as well as consolidate other Army research elements to form a centralized laboratory. The seven corporate laboratories that merged were the Atmospheric Sciences Laboratory (ASL), the Ballistic Research Laboratory (BRL), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]