SO(10)
   HOME
*



picture info

SO(10)
In particle physics, SO(10) refers to a grand unified theory (GUT) based on the spin group Spin(10). The shortened name SO(10) is conventional among physicists, and derives from the Lie algebra or less precisely the Lie group of SO(10), which is a special orthogonal group that is double covered by Spin(10). SO(10) subsumes the Georgi–Glashow and Pati–Salam models, and unifies all fermions in a generation into a single field. This requires 12 new gauge bosons, in addition to the 12 of SU(5) and 9 of SU(4)×SU(2)×SU(2). History Before the SU(5) theory behind the Georgi–Glashow model, Harald Fritzsch and Peter Minkowski, and independently Howard Georgi, found that all the matter contents are incorporated into a single representation, spinorial 16 of SO(10). However, it is worth noting that Georgi found the SO(10) theory just a few hours before finding SU(5) at the end of 1973. Important subgroups It has the branching rules to U(5)×U(1)χZ5. : 45 \right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grand Unified Theory
A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct. Experiments have confirmed that at high energy the electromagnetic interaction and weak interaction unify into a single electroweak interaction. GUT models predict that at even higher energy, the strong interaction and the electroweak interaction will unify into a single electronuclear interaction. This interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. Unifying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Georgi–Glashow Model
In particle physics, the Georgi–Glashow model is a particular grand unified theory (GUT) proposed by Howard Georgi and Sheldon Glashow in 1974. In this model the standard model gauge groups SU(3) × SU(2) × U(1) are combined into a single simple gauge group SU(5). The unified group SU(5) is then thought to be spontaneously broken into the standard model subgroup below a very high energy scale called the grand unification scale. Since the Georgi–Glashow model combines leptons and quarks into single irreducible representations, there exist interactions which do not conserve baryon number, although they still conserve the quantum number associated with the symmetry of the common representation. This yields a mechanism for proton decay, and the rate of proton decay can be predicted from the dynamics of the model. However, proton decay has not yet been observed experimentally, and the resulting lower limit on the lifetime of the proton contradicts the predictions of this m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pati–Salam Model
In physics, the Pati–Salam model is a Grand Unified Theory (GUT) proposed in 1974 by Abdus Salam and Jogesh Pati. Like other GUTs, its goal is to explain the seeming arbitrariness and complexity of the Standard Model in terms of a simpler, more fundamental theory that unifies what are in the Standard Model disparate particles and forces. The Pati–Salam unification is based on there being four quark color charges, dubbed red, green, blue and violet (or originally lilac), instead of the conventional three, with the new "violet" quark being identified with the leptons. The model also has left–right symmetry and predicts the existence of a high energy right handed weak interaction with heavy W' and Z' bosons and right-handed neutrinos. Originally the fourth color was labelled "lilac" to alliterate with "lepton". Pati–Salam is an alternative to the Georgi–Glashow unification also proposed in 1974. Both can be embedded within an unification model. Core theory The Pati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Howard Georgi
Howard Mason Georgi III (born January 6, 1947) is an American theoretical physicist and the Mallinckrodt Professor of Physics and Harvard College Professor at Harvard University. He is also Director of Undergraduate Studies in Physics. He was Co-Master and then Faculty Dean of Leverett House with his wife, Ann Blake Georgi, from 1998 to 2018. His early work was in Grand Unification and gauge coupling unification within SU(5) and SO(10) groups (see Georgi–Glashow model). Education Georgi graduated from Pingry School in 1964, graduated from Harvard College in 1967 and obtained his Ph.D. from Yale University in 1971. He was Junior Fellow in the Harvard Society of Fellows from 1973–76 and a Senior Fellow from 1982-1998. Career In early 1974 Georgi (with Sheldon Glashow) published the first grand unified theory (GUT), the Minimal SU(5) Georgi–Glashow model. Georgi independently (alongside Harald Fritzsch and Peter Minkowski) published a minimal SO(10) GUT model in 1974. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flipped SU(5)
The Flipped SU(5) model is a grand unified theory (GUT) first contemplated by Stephen Barr in 1982, and by Dimitri Nanopoulos and others in 1984. Ignatios Antoniadis, John Ellis, John Hagelin, and Dimitri Nanopoulos developed the supersymmetric flipped SU(5), derived from the deeper-level superstring. Some current efforts to explain the theoretical underpinnings for observed neutrino masses are being developed in the context of supersymmetric flipped . Flipped is not a fully unified model, because the factor of the Standard Model gauge group is within the factor of the GUT group. The addition of states below ''M''x in this model, while solving certain threshold correction issues in string theory, makes the model merely descriptive, rather than predictive.Barcow, Ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Minkowski
Peter Minkowski (born 10 May 1941) is a Swiss theoretical physicist. He is primarily known for his proposal, with Harald Fritzsch, of SO(10) as the group of a grand unified theory and for his independent proposal, more-or-less simultaneously with a number of other theorists, of the seesaw mechanism for the generation of neutrino masses. Biography Peter Minkowski, a life-long Swiss citizen, is the son of Mieczyslaw, a neurologist, and Irene Minkowski-Fux, a painter and architect. After his Abitur at Realgymnasium Zurich and his physics Diploma in 1963 from the Federal Institute of Technology in Zurich (ETHZ), he earned his Ph.D. in 1967 at ETHZ under Markus Fierz with thesis ''Versuch einer konsistenten Theorie eines Spin-2-Mesons'' ("Attempt at a Consistent Theory of a Spin 2 Meson"). In 1967–1969 Minkowski was an assistant at the Institute for Theoretical Physics, University of Louvain in Belgium, in 1969–1971 research associate of the Swiss Institute for Nuclear Research (S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harald Fritzsch
Harald Fritzsch (born 10 February 1943 in Zwickau, Germany, died 16 August 2022 in München) was a German theoretical physicist known for his contributions to the theory of quarks, the development of Quantum Chromodynamics and the great unification of the standard model of particle physics. Education and career After completing his education in Zwickau 1961, he became Soldier of the Nationale Volksarmee of the GDR. He studied Physics in Leipzig from 1963 to 1968. After fleeing to West Germany, he continued his studies in Munich where he finished his Ph.D. under the supervision of Heinrich Mitter. In 1970 Fritzsch visited the Aspen Center for Physics, where he met Murray Gell-Mann. They started a collaboration, first in Aspen, later at the California Institute of Technology. In 1971 they introduced the concept of the colour charge quantum number which allowed them in collaboration with William A. Bardeen to explain the decay rate of pions. In the fall of 1971 Fritzsch and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Left-right Symmetry
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Chirality and helicity The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion. It is negative (“left-handed”) if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, ''helicity'' is the sign of the projection of the spin vector onto the momentum vector: “left” is negative, “right” is positive. The chirality ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yukawa Coupling
In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is a scalar field (or pseudoscalar field) and a Dirac field of the type :~ V \approx g \, \bar\psi \, \phi \, \psi \quad (scalar) \qquad or \qquad g \, \bar\psi \, i \,\gamma^5 \, \phi \, \psi \quad ( pseudoscalar). The Yukawa interaction was developed to model the strong force between hadrons. A Yukawa interaction is thus used to describe the nuclear force between nucleons mediated by pions (which are pseudoscalar mesons). A Yukawa interaction is also used in the Standard Model to describe the coupling between the Higgs field and massless quark and lepton fields (i.e., the fundamental fermion particles). Through spontaneous symmetry breaking, these fermions acquire a mass proportional to the vacuum expectation value of the Higgs field. This Higgs-fermion coupling was first described by Steve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peter Higgs
Peter Ware Higgs (born 29 May 1929) is a British theoretical physicist, Emeritus Professor in the University of Edinburgh,Griggs, Jessica (Summer 2008The Missing Piece ''Edit'' the University of Edinburgh Alumni Magazine, p. 17 and Nobel Prize laureate for his work on the mass of subatomic particles. In the 1960s, Higgs proposed that broken symmetry in electroweak theory could explain the origin of mass of elementary particles in general and of the W and Z bosons in particular. This so-called Higgs mechanism, which was proposed by several physicists besides Higgs at about the same time, predicts the existence of a new particle, the Higgs boson, the detection of which became one of the great goals of physics. On 4 July 2012, CERN announced the discovery of the boson at the Large Hadron Collider. The Higgs mechanism is generally accepted as an important ingredient in the Standard Model of particle physics, without which certain particles would have no mass. Higgs has been honour ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Left-right Model
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Chirality and helicity The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion. It is negative (“left-handed”) if the directions of spin and motion are opposite. So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, ''helicity'' is the sign of the projection of the spin vector onto the momentum vector: “left” is negative, “right” is positive. The chirality ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]