Subjective Logic
Subjective logic is a type of probabilistic logic that explicitly takes epistemic uncertainty and source trust into account. In general, subjective logic is suitable for modeling and analysing situations involving uncertainty and relatively unreliable sources.A. Jøsang. ''Subjective Logic: A formalism for reasoning under uncertainty''. Springer Verlag, 2016A. Jøsang. Artificial Reasoning with Subjective Logic. ''Proceedings of the Second Australian Workshop on Commonsense Reasoning'', Perth, Australia, 1997.A. Jøsang. A Logic for Uncertain Probabilities. '' International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems.'' 9(3), pp. 279–311, June 2001PDF/ref> For example, it can be used for modeling and analysing trust networks and Bayesian networks. Arguments in subjective logic are subjective opinions about state variables which can take values from a domain (aka state space), where a state value can be thought of as a proposition which can be true or false. A b ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Probabilistic Logic
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals. Logical background There are numerous proposals for probabilistic logics. Very roughly, they can be categorized into two different classes: those logics that attempt to make a probabilistic extension to logical entailment, s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Bayes' Theorem
Bayes' theorem (alternatively Bayes' law or Bayes' rule, after Thomas Bayes) gives a mathematical rule for inverting Conditional probability, conditional probabilities, allowing one to find the probability of a cause given its effect. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to someone of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the person is typical of the population as a whole. Based on Bayes' law, both the prevalence of a disease in a given population and the error rate of an infectious disease test must be taken into account to evaluate the meaning of a positive test result and avoid the ''base-rate fallacy''. One of Bayes' theorem's many applications is Bayesian inference, an approach to statistical inference, where it is used to invert the probability of Realization (probability), observations given a model configuration (i.e., th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Subjective Network
Subjective may refer to: * Subjectivity, a subject's personal perspective, feelings, beliefs, desires or discovery, as opposed to those made from an independent, objective, point of view ** Subjective experience, the subjective quality of conscious experience * Subjectivism, a philosophical tenet that accords primacy to subjective experience as fundamental of all measure and law * Subjective case, grammatical case for a noun * Subject (philosophy), who has subjective experiences or a relationship with another entity * Subjectivity–objectivity (philosophy), relational concepts and/or a functional discourse * Subjective theory of value, an economic theory of value * A school of Bayesian probability stating that the state of knowledge corresponds to personal belief * ''Subjectivity'' (journal), an academic journal See also * Subjectivist fallacy * Subjunctive * Objective (other) Objective may refer to: * Objectivity, the quality of being confirmed independently of a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Trust Metric
In psychology and sociology, a trust metric is a measurement or metric of the degree to which one social actor (an individual or a group) trusts another social actor. Trust metrics may be abstracted in a manner that can be implemented on computers, making them of interest for the study and engineering of virtual communities, such as Friendster and LiveJournal. Trust escapes a simple measurement because its meaning is too subjective for universally reliable metrics, and the fact that it is a mental process, unavailable to instruments. There is a strong argument against the use of simplistic metrics to measure trust due to the complexity of the process and the 'embeddedness' of trust that makes it impossible to isolate trust from related factors. There is no generally agreed set of properties that make a particular trust metric better than others, as each metric is designed to serve different purposes, e.g. provides certain classification scheme for trust metrics. Two groups of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Hypergeometric Series
In mathematics, the Gaussian or ordinary hypergeometric function 2''F''1(''a'',''b'';''c'';''z'') is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by and . There is no known system for organizing all of the identities; indeed, there is no known algorithm that can generate all identities; a number of different algorithms are known that generate different series of identities. The theory of the algorithmic discovery of identities remains an active research topic. History The term "hypergeometric series" was first used by John Wallis in his 1655 book ''Arithmetica Infinitor ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Joint Distribution
A joint or articulation (or articular surface) is the connection made between bones, ossicles, or other hard structures in the body which link an animal's skeletal system into a functional whole.Saladin, Ken. Anatomy & Physiology. 7th ed. McGraw-Hill Connect. Webp.274/ref> They are constructed to allow for different degrees and types of movement. Some joints, such as the knee, elbow, and shoulder, are self-lubricating, almost frictionless, and are able to withstand compression and maintain heavy loads while still executing smooth and precise movements. Other joints such as sutures between the bones of the skull permit very little movement (only during birth) in order to protect the brain and the sense organs. The connection between a tooth and the jawbone is also called a joint, and is described as a fibrous joint known as a gomphosis. Joints are classified both structurally and functionally. Joints play a vital role in the human body, contributing to movement, stability, and o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
De Morgan's Laws
In propositional calculus, propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both Validity (logic), valid rule of inference, rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of Logical conjunction, conjunctions and Logical disjunction, disjunctions purely in terms of each other via logical negation, negation. The rules can be expressed in English as: * The negation of "A and B" is the same as "not A or not B". * The negation of "A or B" is the same as "not A and not B". or * The Complement (set theory), complement of the union of two sets is the same as the intersection of their complements * The complement of the intersection of two sets is the same as the union of their complements or * not (A or B) = (not A) and (not B) * not (A and B) = (not A) or (not B) where "A or B" is an "inclusive or" meaning ''at least' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Distributivity
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, one has 2 \cdot (1 + 3) = (2 \cdot 1) + (2 \cdot 3). Therefore, one would say that multiplication ''distributes'' over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted \,\land\,) and the logical or (denoted \,\lor\,) distributes over the other. Definition Given a set S and two binary operators \,*\, and \,+\, on S, *the operation \,*\, is over (or with respect to) \,+\, if, given any elements x, y, \text z of S, x * (y + z) = (x * y) + (x * z) ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications is that, unlike the standard deviation, its units differ from the random variable, which is why the standard devi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th ed., (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', vol. 1, 3rd ed., (1968), Wiley, . This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These concepts have been given an axiomatic mathematical formaliza ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |