Structural Inheritance
Structural inheritance or cortical inheritance is the transmission of an epigenetic trait in a living organism by a self-perpetuating spatial structures. This is in contrast to the transmission of digital information such as is found in DNA sequences, which accounts for the vast majority of known genetic variation. Examples of structural inheritance include the propagation of prions, the infectious proteins of diseases such as scrapie (in sheep and goats), bovine spongiform encephalopathy ('mad cow disease') and Creutzfeldt–Jakob disease (although the protein-only hypothesis of prion transmission has been considered contentious until recently). Prions based on heritable protein structure also exist in yeast. Structural inheritance has also been seen in the orientation of cilia in protozoans such as ''Paramecium'' and ''Tetrahymena'', and 'handedness' of the spiral of the cell in ''Tetrahymena'', and shells of snails. Some organelles also have structural inheritance, such as the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Organelle
In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to the Human body, body, hence ''organelle,'' the suffix ''-elle'' being a diminutive. Organelles are either separately enclosed within their own lipid bilayers (also called membrane-bounded organelles) or are spatially distinct functional units without a surrounding lipid bilayer (non-membrane bounded organelles). Although most organelles are functional units within cells, some functional units that extend outside of cells are often termed organelles, such as cilia, the flagellum and archaellum, and the trichocyst (these could be referred to as membrane bound in the sense that they are attached to (or bound to) the membrane). Organelles are identified by microscopy, and can also be purified by cell fractionation. There are many types of organe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Origination Of Organismal Form
''Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology'' is an anthology published in 2003 edited by Gerd B. Müller and Stuart A. Newman. The book is the outcome of the 4th Altenberg Workshop in Theoretical Biology on "Origins of Organismal Form: Beyond the Gene Paradigm", hosted in 1999 at the Konrad Lorenz Institute for Evolution and Cognition Research. It has been cited over 200 times and has a major influence on extended evolutionary synthesis research. Description of the book The book explores the multiple factors that may have been responsible for the origination of biological form in multicellular life. These biological forms include limbs, segmented structures, and different body symmetries. It explores why the basic body plans of nearly all multicellular life arose in the relatively short time span of the Cambrian Explosion. The authors focus on physical factors (structuralism) other than changes in an organism's genome that ma ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Newsweek
''Newsweek'' is an American weekly news magazine based in New York City. Founded as a weekly print magazine in 1933, it was widely distributed during the 20th century and has had many notable editors-in-chief. It is currently co-owned by Dev Pragad, the president and chief executive officer (CEO), and Johnathan Davis, who sits on the board; each owns 50% of the company. In August 2010, revenue decline prompted Graham Holdings, the Washington Post Company to sell ''Newsweek'' to the audio pioneer Sidney Harman for one US dollar and an assumption of the magazine's liabilities. Later that year, ''Newsweek'' merged with the news and opinion website ''The Daily Beast'', forming The Newsweek Daily Beast Company, later called ''NewsBeast''. ''Newsweek'' was jointly owned by the estate of Harman and the company IAC (company), IAC. ''Newsweek'' continued to experience financial difficulties, leading to the suspension of print publication at the end of 2012. In 2013, IBT Media acquired ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Extended Evolutionary Synthesis
The Extended Evolutionary Synthesis (EES) consists of a set of theoretical concepts argued to be more comprehensive than the earlier modern synthesis of evolutionary biology that took place between 1918 and 1942. The extended evolutionary synthesis was called for in the 1950s by C. H. Waddington, argued for on the basis of punctuated equilibrium by Stephen Jay Gould and Niles Eldredge in the 1980s, and was reconceptualized in 2007 by Massimo Pigliucci and Gerd B. Müller. The extended evolutionary synthesis revisits the relative importance of different factors at play, examining several assumptions of the earlier synthesis, and augmenting it with additional causative factors. It includes multilevel selection, transgenerational epigenetic inheritance, niche construction, evolvability, and several concepts from evolutionary developmental biology. Not all biologists have agreed on the need for, or the scope of, an extended synthesis. Many have collaborated on another synthesi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Protozoa
Protozoa (: protozoan or protozoon; alternative plural: protozoans) are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically, protozoans were regarded as "one-celled animals". When first introduced by Georg Goldfuss, in 1818, the taxon Protozoa was erected as a class within the Animalia, with the word 'protozoa' meaning "first animals", because they often possess animal-like behaviours, such as motility and predation, and lack a cell wall, as found in plants and many algae. This classification remained widespread in the 19th and early 20th century, and even became elevated to a variety of higher ranks, including phylum, subkingdom, kingdom, and then sometimes included within the paraphyletic Protoctista or Protista. By the 1970s, it became usual to require that all taxa be monophyletic (derived from a common ancestor that would also be regarded as protozo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Tracy Sonneborn
Tracy Morton Sonneborn (October 19, 1905 – January 26, 1981) was an American biologist. His life's study was ciliated protozoa of the group ''Paramecium''. Education Sonneborn attended the Baltimore City Public Schools and graduated from the Baltimore City College (high school) in 1922. As an adolescent, Sonneborn was interested in the humanities and considered becoming a rabbi. After taking a biology course taught by E. A. Andrews, his interest in literature was eclipsed by his interest in science. He earned a B.A. from Johns Hopkins University in 1925 and a Ph.D in 1928. His graduate work, supervised by Herbert S. Jennings, focused on the flatworm ''Stenostomum''. Career Sonneborn spent 1928 and 1929 researching the ciliate ''Colpidium'' with Jennings as a National Research Council fellow. He remained at Hopkins until 1939, with appointments as research assistant, research associate, and associate. He was offered a faculty position at Indiana University, where he served ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Base Pair
A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" (or "Watson–Crick–Franklin") base pairs (guanine–cytosine and adenine–thymine) allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The Complementarity (molecular biology), complementary nature of this based-paired structure provides a Redundancy (information theory), redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Plasma Membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols (a lipid component) interspersed between them, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as membrane transporters, and peripheral proteins that loosely attach to the outer (peripheral) side of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose. The cell membrane controls the movement of substances in and out of a cell, being selectively permeable to ions and organic molecu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Cell (biology)
The cell is the basic structural and functional unit of all life, forms of life. Every cell consists of cytoplasm enclosed within a Cell membrane, membrane; many cells contain organelles, each with a specific function. The term comes from the Latin word meaning 'small room'. Most cells are only visible under a light microscope, microscope. Cells Abiogenesis, emerged on Earth about 4 billion years ago. All cells are capable of Self-replication, replication, protein synthesis, and cell motility, motility. Cells are broadly categorized into two types: eukaryotic cells, which possess a Cell nucleus, nucleus, and prokaryotic, prokaryotic cells, which lack a nucleus but have a nucleoid region. Prokaryotes are single-celled organisms such as bacteria, whereas eukaryotes can be either single-celled, such as amoebae, or multicellular organism, multicellular, such as some algae, plants, animals, and fungi. Eukaryotic cells contain organelles including Mitochondrion, mitochondria, which ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Centriole
In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. Centrioles are found in most eukaryotic cells, but are not present in conifers ( Pinophyta), flowering plants ( angiosperms) and most fungi, and are only present in the male gametes of charophytes, bryophytes, seedless vascular plants, cycads, and ''Ginkgo''. A bound pair of centrioles, surrounded by a highly ordered mass of dense material, called the pericentriolar material (PCM), makes up a structure called a centrosome. Centrioles are typically made up of nine sets of short microtubule triplets, arranged in a cylinder. Deviations from this structure include crabs and ''Drosophila melanogaster'' embryos, with nine doublets, and '' Caenorhabditis elegans'' sperm cells and early embryos, with nine singlets. Additional proteins include centrin, cenexin and tektin. The main function of centrioles is to produce cilia during interphase and the aster and the spindle durin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Tetrahymena
''Tetrahymena'' is a genus of free-living ciliates, examples of unicellular eukaryotes. The genus Tetrahymena is the most widely studied member of its phylum. It can produce, store and react with different types of hormones. ''Tetrahymena'' cells can recognize both related and hostile cells. They can also switch from commensalistic to pathogenic modes of survival. They are common in freshwater lakes, ponds, and streams. ''Tetrahymena'' species used as model organisms in biomedical research are '' T. thermophila'' and '' T. pyriformis''. ''T. thermophila'': a model organism in experimental biology As a ciliated protozoan, ''Tetrahymena thermophila'' exhibits nuclear dimorphism: two types of cell nuclei. They have a bigger, non-germline macronucleus and a small, germline micronucleus in each cell at the same time and these two carry out different functions with distinct cytological and biological properties. This unique versatility allows scientists to use ''Tetrahyme ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |