HOME





Stokes Radius
The Stokes radius or Stokes–Einstein radius of a solute is the radius of a hard sphere that diffuses at the same rate as that solute. Named after George Gabriel Stokes, it is closely related to solute mobility, factoring in not only size but also solvent effects. A smaller ion with stronger hydration, for example, may have a greater Stokes radius than a larger ion with weaker hydration. This is because the smaller ion drags a greater number of water molecules with it as it moves through the solution. Stokes radius is sometimes used synonymously with effective hydrated radius in solution. Hydrodynamic radius, ''R''''H'', can refer to the Stokes radius of a polymer or other macromolecule. Spherical case According to Stokes’ law, a perfect sphere traveling through a viscous liquid feels a drag force proportional to the frictional coefficient f: F_\text = fs = (6 \pi \eta a)s where \eta is the liquid's viscosity, s is the sphere's drift speed, and a is its radius. Becaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hard Spheres
Hard spheres are widely used as model particles in the statistical mechanical theory of fluids and solids. They are defined simply as impenetrable spheres that cannot overlap in space. They mimic the extremely strong ("infinitely elastic bouncing") repulsion that atoms and spherical molecules experience at very close distances. Hard spheres systems are studied by analytical means, by molecular dynamics simulations, and by the experimental study of certain colloidal model systems. Beside being a model of theoretical significance, the hard-sphere system is used as a basis in the formulation of several modern, predictive Equations of State for real fluids through the SAFT approach, and models for transport properties in gases through Chapman-Enskog Theory. Formal definition Hard spheres of diameter \sigma are particles with the following pairwise interaction potential: V(\mathbf_1, \mathbf_2) = \begin 0 & \text \quad , \mathbf_1-\mathbf_2, \geq \sigma \\ \infty & \text \qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrical Charge
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others. The presence of either a positive or negative electric charge produces an electric field. The motion of electric charges is an electric current and produces a magnetic field. In most applications, Coulomb's law determines the force acting on an electric charge. Electric potential is the Work (physics), work done to move an electric charge from one point to another within an electric field, typically measured in volts. Electricity plays a central role in many modern technologies, serving in electric power where electric current is used to energise equipment, and in electronics dealing w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Molar Conductivity
The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration: : \Lambda_\text = \frac, where : ''κ'' is the measured conductivity (formerly known as specific conductance), : ''c'' is the molar concentration of the electrolyte. The SI unit of molar conductivity is siemens metres squared per mole (S m2 mol−1). However, values are often quoted in S cm2 mol−1. In these last units, the value of Λm may be understood as the conductance of a volume of solution between parallel plate electrodes one centimeter apart and of sufficient area so that the solution contains exactly one mole of electrolyte. Variation of molar conductivity with dilution There are two types of electrolytes: strong and weak. Strong electrolytes usually undergo complete ionization, and therefore they have higher conductivity than weak electrolytes, which undergo only partial ionization. For strong electrolytes, such as salts, strong a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ion Transport Number
In chemistry, ion transport number, also called the transference number, is the fraction of the total electric current carried in an electrolyte by a given ionic species : :t_i = \frac Differences in transport number arise from differences in electrical mobility. For example, in an aqueous solution of sodium chloride, less than half of the current is carried by the positively charged sodium ions (cations) and more than half is carried by the negatively charged chloride ions (anions) because the chloride ions are able to move faster, i.e., chloride ions have higher mobility than sodium ions. The sum of the transport numbers for all of the ions in solution always equals unity: :\sum_i t_i = 1 The concept and measurement of transport number were introduced by Johann Wilhelm Hittorf in the year 1853. Liquid junction potential can arise from ions in a solution having different ion transport numbers. At zero concentration, the limiting ion transport numbers may be expressed in term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ionic Radius
Ionic radius, ''r''ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice. Ionic radii are typically given in units of either picometers (pm) or angstroms (Å), with 1 Å = 100 pm. Typical values range from 31 pm (0.3 Å) to over 200 pm (2 Å). The concept can be extended to solvated ions in liquid solutions taking into consideration the solvation shell. Trends Ions may be larger or smaller than the neutral atom, depending on the ion's electric charge. When an atom loses an electron to form a cation, the other electrons are more attracted to the nucleus, and the radius of the ion gets smaller. Similarly, when an electron is added to an atom, forming an anion, the added electron increases the size o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalent Spherical Diameter
The equivalent spherical diameter of an irregularly shaped object is the diameter of a sphere of equivalent geometric, optical, electrical, aerodynamic or hydrodynamic behavior to that of the particle under investigation. The particle size of a perfectly smooth, spherical object can be accurately defined by a single parameter, the particle diameter. However, real-life particles are likely to have irregular shapes and surface irregularities, and their size cannot be fully characterized by a single parameter. The concept of equivalent spherical diameter has been introduced in the field of particle size analysis to enable the representation of the particle size distribution in a simplified, homogenized way. Here, the real-life particle is matched with an imaginary sphere which has the same properties according to a defined principle, enabling the real-life particle to be defined by the diameter of the imaginary sphere.   The principle used to match the real-life particle and the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamic Light Scattering
Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon autocorrelation function (also known as photon correlation spectroscopy – PCS or quasi-elastic light scattering – QELS). In the time domain analysis, the autocorrelation function (ACF) usually decays starting from zero delay time, and faster dynamics due to smaller particles lead to faster decorrelation of scattered intensity trace. It has been shown that the intensity ACF is the Fourier transform of the power spectrum, and therefore the DLS measurements can be equally well performed in the spectral domain. DLS can also be used to probe the behavior of complex fluids such as concentrated polymer solutions. Setup A monochromatic light source, usually a laser, is shot through a polarizer and into a sample. The s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Capillary Electrophoresis
Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels. Very often, CE refers to capillary zone electrophoresis (CZE), but other electrophoresis, electrophoretic techniques including capillary gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis and micellar electrokinetic chromatography (MEKC) belong also to this class of methods. In CE methods, analytes migrate through electrolyte solutions under the influence of an electric field. Analytes can be separated according to ionic mobility and/or partitioning into an alternate phase via non-covalent interactions. Additionally, analytes may be concentrated or "focused" by means of gradients in Electrical resistivity and conductivity, conductivity and pH. Instrumentation The instrumentation needed to perform capillary electrophoresis is relatively simple. A basic schematic of a capil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Born Equation
The Born equation can be used for estimating the electrostatic component of Gibbs free energy of solvation of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of methods known as continuum solvation methods). The equation was derived by Max Born. \Delta G =- \frac\left(1-\frac\right) where: * ''N''A = Avogadro constant * ''z'' = charge of ion * ''e'' = elementary charge, 1.6022 C * ''ε''0 = permittivity of free space Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric const ... * ''r''0 = effective radius of ion * ''ε''r = dielectric constant of the solvent Derivation The energy ''U'' stored in an electrostatic field distribution is:U=\frac \varepsilon_0 \varepsilon_\text \int , , ^2 dVKnowin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Einstein Relation (kinetic Theory)
In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is D = \mu \, k_\text T, where * is the diffusion coefficient; * is the "mobility", or the ratio of the particle's terminal drift velocity to an applied force, ; * is the Boltzmann constant; * is the absolute temperature. This equation is an early example of a fluctuation-dissipation relation. Note that the equation above describes the classical case and should be modified when quantum effects are relevant. Two frequently used important special forms of the relation are: * Einstein–Smoluchowski equation, for diffusion of charged particles: D = \frac * Stokes–Einstein–Sutherland equation, for diffusion of spherical particles through a li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boltzmann Constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the molar gas constant, in Planck's law of black-body radiation and Boltzmann's entropy formula, and is used in calculating Johnson–Nyquist noise, thermal noise in resistors. The Boltzmann constant has Dimensional analysis, dimensions of energy divided by temperature, the same as entropy and heat capacity. It is named after the Austrian scientist Ludwig Boltzmann. As part of the 2019 revision of the SI, the Boltzmann constant is one of the seven "Physical constant, defining constants" that have been defined so as to have exact finite decimal values in SI units. They are used in various combinations to define the seven SI base units. The Boltzmann constant is defined to be exactly joules per kelvin, with the effect of defining the SI unit ke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

George Gabriel Stokes
Sir George Gabriel Stokes, 1st Baronet, (; 13 August 1819 – 1 February 1903) was an Irish mathematician and physicist. Born in County Sligo, Ireland, Stokes spent his entire career at the University of Cambridge, where he served as the Lucasian Professor of Mathematics for 54 years, from 1849 until his death in 1903, the longest tenure held by the Lucasian Professor. As a physicist, Stokes made seminal contributions to fluid mechanics, including the Navier–Stokes equations; and to physical optics, with notable works on Polarization (waves), polarisation and fluorescence. As a mathematician, he popularised "Stokes' theorem" in vector calculus and contributed to the theory of asymptotic expansions. Stokes, along with Felix Hoppe-Seyler, first demonstrated the oxygen transport function of haemoglobin, and showed colour changes produced by the aeration of haemoglobin solutions. Stokes was made a baronet by the British monarch in 1889. In 1893 he received the Royal Society's Copl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]