HOME



picture info

Smoothed Octagon
The smoothed octagon is a region in the plane found by Karl Reinhardt in 1934 and conjectured by him to have the ''lowest'' maximum packing density of the plane of all centrally symmetric convex shapes. It was also independently discovered by Kurt Mahler in 1947. It is constructed by replacing the corners of a regular octagon with a section of a hyperbola that is tangent to the two sides adjacent to the corner and asymptotic to the sides adjacent to these. Construction The hyperbola that forms each corner of the smoothed octagon is tangent to two sides of a regular octagon, and asymptotic to the two adjacent to these. The following details apply to a regular octagon of circumradius \sqrt with its centre at the point (2+\sqrt,0) and one vertex at the point (2,0). For two constants \ell=\sqrt - 1 and m=(1/2)^, the hyperbola is given by the equation \ell^2x^2-y^2=m^2 or the equivalent parameterization (for the right-hand branch only) \begin x&=\frac \cosh\\ y&= m \sinh\\ \e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smoothed Octagon Simple
In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal. Smoothing may be used in two important ways that can aid in data analysis (1) by being able to extract more information from the data as long as the assumption of smoothing is reasonable and (2) by being able to provide analyses that are both flexible and robust. Many different algorithms are used in smoothing. Compared to curve fitting Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: * curve fitting often involves the use of an explicit function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ulam's Packing Conjecture
Ulam's packing conjecture, named for Stanisław Ulam, is a conjecture about the highest possible packing density of identical convex solids in three-dimensional Euclidean space. The conjecture says that the optimal density for packing congruent spheres is smaller than that for any other convex body. That is, according to the conjecture, the ball is the convex solid which forces the largest fraction of space to remain empty in its optimal packing structure. This conjecture is therefore related to the Kepler conjecture about sphere packing. Since the solution to the Kepler conjecture establishes that identical balls must leave ≈25.95% of the space empty, Ulam's conjecture is equivalent to the statement that no other convex solid forces that much space to be left empty. Origin This conjecture was attributed posthumously to Ulam by Martin Gardner, who remarks in a postscript added to one of his ''Mathematical Games'' columns that Ulam communicated this conjecture to him in 1972. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heptagon
In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon. The heptagon is sometimes referred to as the septagon, using ''Wikt:septa-, septa-'' (an elision of ''Wikt:septua-, septua-''), a Latin-derived numerical prefix, rather than ''Wikt:hepta-, hepta-'', a Greek language, Greek-derived numerical prefix (both are cognate), together with the suffix ''-gon'' for , meaning angle. Regular heptagon A regular polygon, regular heptagon, in which all sides and all angles are equal, has internal angles of 5π/7 radians (128 degree (angle), degrees). Its Schläfli symbol is . Area The area (''A'') of a regular heptagon of side length ''a'' is given by: :A = \fraca^2 \cot \frac \simeq 3.634 a^2. This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with Vertex (geometry), vertices at the center and at the heptagon's vertices, and then halving each triangle using the apothem as the common side. The apothem is half the cotangent of \pi/7 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Local Minimum
In mathematical analysis, the maximum and minimum of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given range (the ''local'' or ''relative'' extrema) or on the entire domain (the ''global'' or ''absolute'' extrema) of a function. Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. In statistics, the corresponding concept is the sample maximum and minimum. Definition A real-valued function ''f'' defined on a domain ''X'' has a global (or absolute) maximum point at ''x''∗, if for all ''x'' in ''X''. Similarly, the function has a global (or absolute) minimum point at ''x''∗ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fedor Nazarov
Fedor (Fedya) L'vovich Nazarov (; born 1967) is a Russian mathematician working in the United States. He has done research in mathematical analysis and its applications, in particular in functional analysis and classical analysis (including harmonic analysis, Fourier analysis, and complex analytic functions). Biography Fedor Nazarov received his Ph.D. from St Petersburg University in 1993, with Victor Petrovich Havin as advisor. Before his Ph.D. studies, Nazarov received the Gold Medal and Special prize at the International Mathematics Olympiad in 1984. Nazarov worked at Michigan State University in East Lansing from 1995 to 2007 and at the University of Wisconsin–Madison from 2007 to 2011. Since 2011, he has been a full professor of Mathematics at Kent State University. Awards Nazarov was awarded the Salem Prize in 1999 "for his work in harmonic analysis, in particular, the uncertainty principle, and his contribution to the development of Bellman function methods". ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thomas Callister Hales
Thomas Callister Hales (born June 4, 1958) is an American mathematician working in the areas of representation theory, discrete geometry, and formal verification. In representation theory he is known for his work on the Langlands program and the proof of the fundamental lemma over the group Sp(4) (many of his ideas were incorporated into the final proof of the fundamental lemma, due to Ngô Bảo Châu). In discrete geometry, he settled the Kepler conjecture on the density of sphere packings, the honeycomb conjecture, and the dodecahedral conjecture. In 2014, he announced the completion of the Flyspeck Project, which formally verified the correctness of his proof of the Kepler conjecture. Biography He received his Ph.D. from Princeton University in 1986 with a dissertation titled ''The Subregular Germ of Orbital Integrals''. Hales taught at Harvard University and the University of Chicago, and from 1993 and 2002 he worked at the University of Michigan. In 1998, Hales submitted ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle Packing
In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap. The associated ''packing density'', , of an arrangement is the proportion of the surface covered by the circles. Generalisations can be made to higher dimensions – this is called ''sphere packing'', which usually deals only with identical spheres. The branch of mathematics generally known as "circle packing" is concerned with the geometry and combinatorics of packings of arbitrarily-sized circles: these give rise to discrete analogs of conformal mapping, Riemann surfaces and the like. Densest packing In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (group)
In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a subgroup of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a Delone set. More abstractly, a lattice can be described as a free abelian group of dimension n which spans the vector space \mathbb^n. For any basis of \mathbb^n, the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Karl Reinhardt (mathematician)
Karl August Reinhardt (27 January 1895 – 27 April 1941) was a German mathematician whose research concerned geometry, including polygons and tessellations. He solved one of the parts of Hilbert's eighteenth problem, and is the namesake of the Reinhardt domains in several complex variables, and Reinhardt polygons and the Reinhardt conjecture on packing density. Life Reinhardt was born on January 27, 1895, in Frankfurt, the descendant of farming stock. One of his childhood friends was mathematician Wilhelm Süss. After studying at the gymnasium there, he became a student at the University of Marburg in 1913 before his studies were interrupted by World War I. During the war, he became a soldier, a high school teacher, and an assistant to mathematician David Hilbert at the University of Göttingen. Reinhardt completed his Ph.D. at Goethe University Frankfurt in 1918. His dissertation, ''Über die Zerlegung der Ebene in Polygone'', concerned tessellations of the plane, and was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circumscribed Circle
In geometry, a circumscribed circle for a set of points is a circle passing through each of them. Such a circle is said to ''circumscribe'' the points or a polygon formed from them; such a polygon is said to be ''inscribed'' in the circle. * Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle. * Cyclic polygon, a general polygon that can be circumscribed by a circle. The vertices of this polygon are concyclic points. All triangles are cyclic polygons. * Cyclic quadrilateral, a special case of a cyclic polygon. See also * Smallest-circle problem, the related problem of finding the circle with minimal radius containing an arbitrary set of points, not necessarily passing through them. * Inscribed figure {{sia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]