Skew Infinite Polygon
   HOME



picture info

Skew Infinite Polygon
In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all Collinearity, colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a Cylinder (geometry), cylinder. Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups. They are constructed a single operator as the composite of all the reflections of the Coxeter group. Regular zig-zag skew apeirogons in two dimensions A regular zig-zag skew apeirogon has (2*∞), D∞d Frieze group symmetry. Regular zig-zag skew apeirogons exist as Petrie polygons of the three regular tilings of the plane: , , and . These regular zig-zag skew apeirogons have internal angles of 90°, 120°, and 60° respectively, from the regular polygons within the tilings: Is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE