Semiperimeter
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter ''s''. Triangles The semiperimeter is used most often for triangles; the formula for the semiperimeter of a triangle with side lengths ''a'', ''b'', and ''c'' is :s = \frac. Properties In any triangle, any vertex and the point where the opposite excircle touches the triangle partition the triangle's perimeter into two equal lengths, thus creating two paths each of which has a length equal to the semiperimeter. If A, B, C, A', B', and C' are as shown in the figure, then the segments connecting a vertex with the opposite excircle tangency (AA', BB', and CC', shown in red in the diagram) are known as splitters, and s = , AB, +, A'B, =, AB, +, AB ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tangential Quadrilateral
In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the ''incenter'' and its radius is called the ''inradius''. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called ''circumscribable quadrilaterals'', ''circumscribing quadrilaterals'', and ''circumscriptible quadrilaterals''. Tangential quadrilaterals are a special case of tangential polygons. Other less frequently used names for this class of quadrilaterals are ''inscriptable quadrilateral'', ''inscriptible quadrilateral'', ''inscribable quadrilateral'', ''circumcyclic quadrilateral'', and ''co-cyclic quadrilateral''.. Due to the risk of confusion with a quadrilateral that has a circumcircle, which is called a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heron's Formula
In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . If s = \tfrac12(a + b + c) is the semiperimeter of the triangle, the area is, :A = \sqrt. It is named after first-century engineer Heron of Alexandria (or Hero) who proved it in his work ''Metrica'', though it was probably known centuries earlier. Example Let be the triangle with sides , and . This triangle’s semiperimeter is :s=\frac=\frac=16 and so the area is : \begin A &= \sqrt = \sqrt\\ &= \sqrt = \sqrt = 24. \end In this example, the side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well in cases where one or more of the side lengths are not integers. Alternate expressions Heron's formula can also be written in terms of just the side lengths instead of using the semiperimeter, in several ways, :\begin A &=\tfrac\sqrt \\ mu&=\tfrac\sqrt \\ mu&=\tfrac\sqrt \\ mu&=\tfrac\sqrt \\ mu&=\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inradius
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Quadrilateral
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be '' concyclic''. The center of the circle and its radius are called the ''circumcenter'' and the ''circumradius'' respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek (''kuklos''), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a non-square rhombus. The section characterizations below states wha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Excircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brahmagupta's Formula
In Euclidean geometry, Brahmagupta's formula is used to find the area of any cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides; its generalized version (Bretschneider's formula) can be used with non-cyclic quadrilateral. Heron's formula can be thought as a sub-case of the Brahmagupta's formula. Formula Brahmagupta's formula gives the area of a cyclic quadrilateral whose sides have lengths , , , as : K=\sqrt where , the semiperimeter, is defined to be : s=\frac. This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula. If the semiperimeter is not used, Brahmagupta's formula is : K=\frac\sqrt. Another equivalent version is : K=\frac\cdot Proof Trigonometric p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadrilateral
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, derived from greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices A, B, C and D is sometimes denoted as \square ABCD. Quadrilaterals are either simple (not self-intersecting), or complex (self-intersecting, or crossed). Simple quadrilaterals are either convex or concave. The interior angles of a simple (and planar) quadrilateral ''ABCD'' add up to 360 degrees of arc, that is :\angle A+\angle B+\angle C+\angle D=360^. This is a special case of the ''n''-gon interior angle sum formula: ''S'' = (''n'' − 2) × 180°. All non-self-crossing quadrilaterals tile the pla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bicentric Quadrilateral
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and center of these circles are called ''inradius'' and ''circumradius'', and ''incenter'' and ''circumcenter'' respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a ''double circle quadrilateral'' and ''double scribed quadrilateral''. If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. This is a special case of Poncelet's porism, which was proved by the French mathematician Jean-Victor Poncelet (1788–1867). Special c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangles
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of Euclid's Elements. The names used for modern classification are eit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bretschneider's Formula
In geometry, Bretschneider's formula is the following expression for the area of a general quadrilateral: : K = \sqrt ::= \sqrt . Here, , , , are the sides of the quadrilateral, is the semiperimeter, and and are any two opposite angles, since \cos (\alpha+ \gamma) = \cos (\beta+ \delta) as long as \alpha+\beta+\gamma+\delta=360^. Bretschneider's formula works on both convex and concave quadrilaterals (but not crossed ones), whether it is cyclic or not. The German mathematician Carl Anton Bretschneider discovered the formula in 1842. The formula was also derived in the same year by the German mathematician Karl Georg Christian von Staudt. Proof Denote the area of the quadrilateral by . Then we have : \begin K &= \frac + \frac.\end Therefore : 2K= (ad) \sin \alpha + (bc) \sin \gamma. : 4K^2 = (ad)^2 \sin^2 \alpha + (bc)^2 \sin^2 \gamma + 2abcd \sin \alpha \sin \gamma. The law of cosines implies that : a^2 + d^2 -2ad \cos \alpha = b^2 + c^2 -2bc \cos \gamma, because ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Right Triangle
A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right angle (that is, a 90-degree angle), i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry. The side opposite to the right angle is called the '' hypotenuse'' (side ''c'' in the figure). The sides adjacent to the right angle are called ''legs'' (or ''catheti'', singular: '' cathetus''). Side ''a'' may be identified as the side ''adjacent to angle B'' and ''opposed to'' (or ''opposite'') ''angle A'', while side ''b'' is the side ''adjacent to angle A'' and ''opposed to angle B''. If the lengths of all three sides of a right triangle are integers, the triangle is said to be a Pythagorean triangle and its side lengths are collectively known as a '' Py ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |