Roger J. B. Wets
   HOME
*



picture info

Roger J. B. Wets
Roger Jean-Baptiste Robert Wets (born February 1937) is a "pioneer" in stochastic programming and a leader in variational analysis who publishes as Roger J-B Wets. His research, expositions, graduate students, and his collaboration with R. Tyrrell Rockafellar have had a profound influence on optimization theory, computations, and applications. Since 2009, Wets has been a distinguished research professor at the mathematics department of the University of California, Davis. Schooling and positions Roger Wets attended high school in Belgium, after which he worked for his family while earning his '' Licence'' in applied economics from Université de Bruxelles (Brussels, Belgium) in 1961. He was encouraged by Jacques H. Drèze to study optimization with George Dantzig at the program in operations research at the University of California, Berkeley. Dantzig and mathematician–statistician David Blackwell jointly supervised Wets's dissertation.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stochastic Programming
In the field of mathematical optimization, stochastic programming is a framework for modeling optimization problems that involve uncertainty. A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both optimizes some criteria chosen by the decision maker, and appropriately accounts for the uncertainty of the problem parameters. Because many real-world decisions involve uncertainty, stochastic programming has found applications in a broad range of areas ranging from finance to transportation to energy optimization. Two-stage problems The basic idea of two-stage stochastic programming is that (optimal) decisions should be based on data available at the time the decisions are made and cannot depend on future ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Institute For Applied Systems Analysis
The International Institute for Applied Systems Analysis (IIASA) is an independent international research institute located in Laxenburg, near Vienna, in Austria. Through its research programs and initiatives, the institute conducts policy-oriented interdisciplinary research into issues too large or complex to be solved by a single country or academic discipline. This includes pressing concerns that affect the future of humanity, such as climate change, energy security, population aging, and sustainable development. The results of IIASA research and the expertise of its researchers are made available to policymakers in countries around the world to help them produce effective policies that will enable them to face these challenges. Organization IIASA has over 400 researchers from 52 countries that work in Laxenburg, and an extensive network of collaborators, alumni, and visitors from across the globe. The institute is currently directed by Albert van Jaarsveld. Wolfgang L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Institute For Operations Research And The Management Sciences
The Institute for Operations Research and the Management Sciences (INFORMS) is an international society for practitioners in the fields of operations research (O.R.), management science, and analytics. It was established in 1995 with the merger of the Operations Research Society of America (ORSA) and The Institute of Management Sciences (TIMS). The INFORMS Roundtable includes institutional members from operations research departments at major organizations. INFORMS administers the honor society Omega Rho. See also * Institute of Industrial Engineers The Institute of Industrial and Systems Engineers (IISE), formerly the Institute of Industrial Engineers, is a professional society dedicated solely to the support of the industrial engineering profession and individuals involved with improving ... References Chile wins international prize for the development of analytical tools against the pandemicbr> Vishal Gupta Awarded INFORMS Wagner Prize for System to Curb COVID Sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Asymptotic Statistics
In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of . In practice, a limit evaluation is considered to be approximately valid for large finite sample sizes too.Höpfner, R. (2014), Asymptotic Statistics, Walter de Gruyter. 286 pag. , Overview Most statistical problems begin with a dataset of size . The asymptotic theory proceeds by assuming that it is possible (in principle) to keep collecting additional data, thus that the sample size grows infinitely, i.e. . Under the assumption, many results can be obtained that are unavailable for samples of finite size. An example is the weak law of large numbers. The law states that for a sequence of independent and identically distributed (IID) random variables , if one value is drawn from each ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterative Method
In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the previous ones. A specific implementation of an iterative method, including the termination criteria, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common. In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations A\mathbf=\mathbf by Gaussian elimination). Iterative methods are often the only choice for nonlinear equations. H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epigraph (mathematics)
In mathematics, the epigraph or supergraph of a function f : X \to \infty, \infty/math> valued in the extended real numbers \infty, \infty= \R \cup \ is the set, denoted by \operatorname f, of all points in the Cartesian product X \times \R lying on or above its graph. The strict epigraph \operatorname_S f is the set of points in X \times \R lying strictly above its graph. Importantly, although both the graph and epigraph of f consists of points in X \times \infty, \infty the epigraph consists of points in the subset X \times \R, which is not necessarily true of the graph of f. If the function takes \pm \infty as a value then \operatorname f will be a subset of its epigraph \operatorname f. For example, if f\left(x_0\right) = \infty then the point \left(x_0, f\left(x_0\right)\right) = \left(x_0, \infty\right) will belong to \operatorname f but not to \operatorname f. These two sets are nevertheless closely related because the graph can always be reconstructed from the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Filter (mathematics)
In mathematics, a filter or order filter is a special subset of a partially ordered set (poset). Filters appear in order and lattice theory, but can also be found in topology, from which they originate. The dual notion of a filter is an order ideal. Filters on sets were introduced by Henri Cartan in 1937 and as described in the article dedicated to filters in topology, they were subsequently used by Nicolas Bourbaki in their book ''Topologie Générale'' as an alternative to the related notion of a net developed in 1922 by E. H. Moore and Herman L. Smith. Order filters are generalizations of this notion from sets to the more general setting of partially ordered sets. For information on order filters in the special case where the poset consists of the power set ordered by set inclusion, see the article Filter (set theory). Motivation 1. Intuitively, a filter in a partially ordered set (), P, is a subset of P that includes as members those elements that are large enough ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set-valued Analysis
A set-valued function (or correspondence) is a mathematical function that maps elements from one set, the domain of the function, to subsets of another set. Set-valued functions are used in a variety of mathematical fields, including optimization, control theory and game theory. Set-valued functions are also known as multivalued functions in some references, but herein and in many others references in mathematical analysis, a multivalued function is a set-valued function that has a further continuity property, namely that the choice of an element in the set f(x) defines a corresponding element in each set f(y) for close to , and thus defines locally an ordinary function. Examples The argmax of a function is in general, multivalued. For example, \operatorname_ \cos(x) = \. Set-valued analysis Set-valued analysis is the study of sets in the spirit of mathematical analysis and general topology. Instead of considering collections of only points, set-valued analysis co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Claude Lemaréchal
Claude Lemaréchal is a French applied mathematician, and former senior researcher (''directeur de recherche'') at INRIA near Grenoble, France. In mathematical optimization, Claude Lemaréchal is known for his work in numerical methods for nonlinear optimization, especially for problems with nondifferentiable kinks. Lemaréchal and Philip Wolfe pioneered bundle methods of descent for convex minimization.Citation of Claude Lemaréchal
for the Prize in 1994 in ''Optima'', Issue 44 (1994) pages 4-5.


Awards

In 1994, Claude Lemaréchal and

Mathematical Optimization Society
The Mathematical Optimization Society (MOS), known as the Mathematical Programming Society until 2010,The Mathematical Optimization Society was known as the Mathematical Programming Society (MPS) until 2010
. is an international association of researchers active in . The MOS encourages the research, development, and use of optimization—including ,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]