HOME
*





Reciprocity (electrical Networks)
Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first. The reciprocity theorem is valid for almost all passive networks. The reciprocity theorem is a feature of a more general principle of reciprocity in electromagnetism. Description If a current, I_\text , injected into port A produces a voltage, V_\text , at port B and I_\text injected into port B produces V_\text at port A, then the network is said to be reciprocal. Equivalently, reciprocity can be defined by the dual situation; applying voltage, V_\text , at port A producing current I_\text at port B and V_\text at port B producing current I_\text at port A. In general, passive networks are reciprocal. Any network that consists entirely of ideal capacitances, inductanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Passivity (engineering)
Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use ''passivity'' to refer to incrementally passive components and systems, which are incapable of power gain. In contrast, control systems engineers will use ''passivity'' to refer to thermodynamically passive ones, which consume, but do not produce, energy. As such, without context or a qualifier, the term ''passive'' is ambiguous. An electronic circuit consisting entirely of passive components is called a passive circuit, and has the same properties as a passive component. If a component is ''not'' passive, then it is an active component. Thermodynamic passivity In control systems and circuit network theory, a passive component or circuit is one that consumes energy, but does not produce energy. Under this methodology, voltage and current sources are considered active, while resistors, capacitors, inductors, transistors, tunne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Y-parameter
Admittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal ( linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Z-parameters, H-parameters, T-parameters or ABCD-parameters. The Y-parameter matrix A Y-parameter matrix describes the behaviour of any linear electrical network that can be regarded as a black box with a number of ports. A ''port'' in this context is a pair of electrical terminals carrying equal and opposite currents into and out of the network, and having a particular voltage between them. The Y-matrix give ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reciprocity Example Ports 2 To 1
Reciprocity may refer to: Law and trade * Reciprocity (Canadian politics), free trade with the United States of America ** Reciprocal trade agreement, entered into in order to reduce (or eliminate) tariffs, quotas and other trade restrictions on items traded between the signatories * Interstate reciprocity, recognition of sibling federated states' laws: ** In the United States specifically: *** Full Faith and Credit Clause, which provides for it ** Occupational licensing, which in some jurisdictions provides for it * Traffic violations reciprocity where non-resident drivers are treated like residents * Quid pro quo, a legal concept of the exchange of good or services, each having value Social sciences and humanities * Norm of reciprocity, social norm of in-kind responses to the behavior of others * Reciprocity (cultural anthropology), way of defining people's informal exchange of goods and labour * Reciprocity (evolution), mechanisms for the evolution of cooperation * Recipro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reciprocity Example Ports 1 To 2
Reciprocity may refer to: Law and trade * Reciprocity (Canadian politics), free trade with the United States of America ** Reciprocal trade agreement, entered into in order to reduce (or eliminate) tariffs, quotas and other trade restrictions on items traded between the signatories * Interstate reciprocity, recognition of sibling federated states' laws: ** In the United States specifically: *** Full Faith and Credit Clause, which provides for it ** Occupational licensing, which in some jurisdictions provides for it * Traffic violations reciprocity where non-resident drivers are treated like residents * Quid pro quo, a legal concept of the exchange of good or services, each having value Social sciences and humanities * Norm of reciprocity, social norm of in-kind responses to the behavior of others * Reciprocity (cultural anthropology), way of defining people's informal exchange of goods and labour * Reciprocity (evolution), mechanisms for the evolution of cooperation * Recipro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volt
The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827). Definition One volt is defined as the electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points. Equivalently, it is the potential difference between two points that will impart one joule of energy per coulomb of charge that passes through it. It can be expressed in terms of SI base units ( m, kg, s, and A) as : \text = \frac = \frac = \frac. It can also be expressed as amperes times ohms (current times resistance, Ohm's law), webers per second (magnetic flux per time), watts per ampere (power per current), or joules per coulomb (energy per charge), which is also equivalent to electronvolts per elementary charge: : \text = \text\Omega = \fra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ampere
The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to electrons worth of charge moving past a point in a second. It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted. As of the 2019 redefinition of the SI base units, the ampere is defined by fixing the elementary charge to be exactly C ( coulomb), which means an ampere is an electrical current equivalent to elementary charges moving every seconds or elementary charges moving in a second. Prior to the redefinition the ampere was defined as the current that would need to be passed through 2 parallel wires 1 metre apart to produce a magnetic force of newtons per metre. The earlier CGS system had two definitions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reciprocity Example Circuit
Reciprocity may refer to: Law and trade * Reciprocity (Canadian politics), free trade with the United States of America ** Reciprocal trade agreement, entered into in order to reduce (or eliminate) tariffs, quotas and other trade restrictions on items traded between the signatories * Interstate reciprocity, recognition of sibling federated states' laws: ** In the United States specifically: *** Full Faith and Credit Clause, which provides for it ** Occupational licensing, which in some jurisdictions provides for it * Traffic violations reciprocity where non-resident drivers are treated like residents * Quid pro quo, a legal concept of the exchange of good or services, each having value Social sciences and humanities * Norm of reciprocity, social norm of in-kind responses to the behavior of others * Reciprocity (cultural anthropology), way of defining people's informal exchange of goods and labour * Reciprocity (evolution), mechanisms for the evolution of cooperation * Recipro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Attenuator (electronics)
An attenuator is an electronic device that reduces the power of a signal without appreciably distorting its waveform. An attenuator is effectively the opposite of an amplifier, though the two work by different methods. While an amplifier provides gain, an attenuator provides loss, or gain less than 1. Construction and usage Attenuators are usually passive devices made from simple voltage divider networks. Switching between different resistances forms adjustable stepped attenuators and continuously adjustable ones using potentiometers. For higher frequencies precisely matched low VSWR resistance networks are used. Fixed attenuators in circuits are used to lower voltage, dissipate power, and to improve impedance matching. In measuring signals, attenuator pads or adapters are used to lower the amplitude of the signal a known amount to enable measurements, or to protect the measuring device from signal levels that might damage it. Attenuators are also used to 'match' impe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transpose
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations). The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. In the case of a logical matrix representing a binary relation R, the transpose corresponds to the converse relation RT. Transpose of a matrix Definition The transpose of a matrix , denoted by , , , A^, , , or , may be constructed by any one of the following methods: # Reflect over its main diagonal (which runs from top-left to bottom-right) to obtain #Write the rows of as the columns of #Write the columns of as the rows of Formally, the -th row, -th column element of is the -th row, -th column element of : :\left mathbf^\operatorname\right = \left mathbf\right. If is an matrix, then is an matrix. In the case of square matrices, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Column Vector
In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, consisting of a single row of n entries, \boldsymbol a = \begin a_1 & a_2 & \dots & a_n \end. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: \begin x_1 \; x_2 \; \dots \; x_m \end^ = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end and \begin x_1 \\ x_2 \\ \vdots \\ x_m \end^ = \begin x_1 \; x_2 \; \dots \; x_m \end. The set of all row vectors with ''n'' entries in a given field (such as the real numbers) forms an ''n''-dimensional vector space; similarly, the set of all column vectors with ''m'' entries forms an ''m''-dimensional vector space. The space of row vectors with ''n'' entries can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ABCD-parameters
A two-port network (a kind of four-terminal network or quadripole) is an electrical network ( circuit) or device with two ''pairs'' of terminals to connect to external circuits. Two terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the other terminal on the same port.Gray, §3.2, p. 172Jaeger, §10.5 §13.5 §13.8 The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 is considered the input port and port 2 is considered the output port. It's used in mathematical circuit analysis. Application The two-port network model is used in mathematical circuit analysis techniques to isolate portions of larger circuits. A two-port network is regarded as a "black box" with its properties specified by a matrix of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

H-parameters
A two-port network (a kind of four-terminal network or quadripole) is an electrical network ( circuit) or device with two ''pairs'' of terminals to connect to external circuits. Two terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the other terminal on the same port.Gray, §3.2, p. 172Jaeger, §10.5 §13.5 §13.8 The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 is considered the input port and port 2 is considered the output port. It's used in mathematical circuit analysis. Application The two-port network model is used in mathematical circuit analysis techniques to isolate portions of larger circuits. A two-port network is regarded as a "black box" with its properties specified by a matrix of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]