HOME
*



picture info

Ramer–Douglas–Peucker Algorithm
The Ramer–Douglas–Peucker algorithm, also known as the Douglas–Peucker algorithm and iterative end-point fit algorithm, is an algorithm that decimates a curve composed of line segments to a similar curve with fewer points. It was one of the earliest successful algorithms developed for cartographic generalization. Idea The purpose of the algorithm is, given a curve composed of line segments (which is also called a ''Polyline'' in some contexts), to find a similar curve with fewer points. The algorithm defines 'dissimilar' based on the maximum distance between the original curve and the simplified curve (i.e., the Hausdorff distance between the curves). The simplified curve consists of a subset of the points that defined the original curve. Algorithm The starting curve is an ordered set of points or lines and the distance dimension . The algorithm recursively divides the line. Initially it is given all the points between the first and last point. It automatically ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decimation (signal Processing)
In digital signal processing, downsampling, compression, and decimation are terms associated with the process of ''resampling'' in a multi-rate digital signal processing system. Both ''downsampling'' and ''decimation'' can be synonymous with ''compression'', or they can describe an entire process of bandwidth reduction (filtering) and sample-rate reduction. When the process is performed on a sequence of samples of a ''signal'' or a continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate (or density, as in the case of a photograph). ''Decimation'' is a term that historically means the '' removal of every tenth one''. But in signal processing, ''decimation by a factor of 10'' actually means ''keeping'' only every tenth sample. This factor multiplies the sampling interval or, equivalently, divides the sampling rate. For example, if compact disc audio at 44,100 samples/second is ''decimated'' by a factor of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Master Theorem (analysis Of Algorithms)
In the analysis of algorithms, the master theorem for divide-and-conquer recurrences provides an asymptotic analysis (using Big O notation) for recurrence relations of types that occur in the analysis of many divide and conquer algorithms. The approach was first presented by Jon Bentley, Dorothea Blostein (née Haken), and James B. Saxe in 1980, where it was described as a "unifying method" for solving such recurrences. The name "master theorem" was popularized by the widely used algorithms textbook ''Introduction to Algorithms'' by Cormen, Leiserson, Rivest, and Stein. Not all recurrence relations can be solved with the use of this theorem; its generalizations include the Akra–Bazzi method. Introduction Consider a problem that can be solved using a recursive algorithm such as the following: procedure p(input ''x'' of size ''n''): if ''n'' 1). Crucially, a and b must not depend on n. The theorem below also assumes that, as a base case for the recurrence, T(n)=\Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Geometric Algorithms
The following is a list of well-known algorithms along with one-line descriptions for each. Automated planning Combinatorial algorithms General combinatorial algorithms * Brent's algorithm: finds a cycle in function value iterations using only two iterators * Floyd's cycle-finding algorithm: finds a cycle in function value iterations * Gale–Shapley algorithm: solves the stable marriage problem * Pseudorandom number generators (uniformly distributed—see also List of pseudorandom number generators for other PRNGs with varying degrees of convergence and varying statistical quality): ** ACORN generator ** Blum Blum Shub ** Lagged Fibonacci generator ** Linear congruential generator ** Mersenne Twister Graph algorithms * Coloring algorithm: Graph coloring algorithm. * Hopcroft–Karp algorithm: convert a bipartite graph to a maximum cardinality matching * Hungarian algorithm: algorithm for finding a perfect matching * Prüfer coding: conversion between a labeled tree and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Graphics Algorithms
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation. This term may also refer to a group of computers that are linked and function together, such as a computer network or computer cluster. A broad range of industrial and consumer products use computers as control systems. Simple special-purpose devices like microwave ovens and remote controls are included, as are factory devices like industrial robots and computer-aided design, as well as general-purpose devices like personal computers and mobile devices like smartphones. Computers power the Internet, which links ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curve Fitting
Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors. Fitted curves can be used as an aid for data visualization, to infer values of a function where no data are available, and to summarize the relationships among two or more variables. Extrapolation refers to the use of a fitted curve beyond the range of the observed data, and is subject to a degree of uncertainty since it may reflect the method used to construct the curve as much as it reflects the observed data. For linear-algebraic analys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lang Simplification Algorithm
Lang may refer to: *Lang (surname), a surname of independent Germanic or Chinese origin Places * Lang Island (Antarctica), East Antarctica * Lang Nunatak, Antarctica * Lang Sound, Antarctica * Lang Park, a stadium in Brisbane, Australia * Lang, New South Wales, a locality in Australia * Division of Lang, a former Australian electoral division. * Electoral district of Sydney-Lang, a former New South Wales electoral division. * Lang, Austria, a town in Leibniz, Styria, Austria * Lang, Saskatchewan, a Canadian village * Lang Island, Sunda Strait, Indonesia * Lang, Iran, a village in Gilan Province, Iran * Lang Varkshi, Khuzestan Province, Iran * Lang Glacier, Bernese Alps, Valais, Switzerland * Lang Suan District, southern Thailand * Lang County, or Nang County, Tibet * Lang, Georgia, United States * Lang Chánh District, Vietnam * Lang Trang, a cave formation located in Vietnam Computing * S-Lang, a programming language created in 1992 *LANG, environment variable in POS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Opheim Simplification Algorithm
Opheim may refer to: *Opheim (surname), several people * Opheim, Norway, a village in Ål. Buskerud County, Norway *Opheim, Montana, a town in Valley County, Montana **Opheim Air Force Station a former US Air Force facility near Opheim, Montana **Opheim Hills The Opheim Hills, el. , is a set of hills northwest of Opheim, Montana in Valley County, Montana, United States. See also * List of mountain ranges in Montana This is a list of mountain ranges in the state of Montana. Montana is the fourth lar ..., a range of Hills near Opheim, Montana See also * Ophiem, Illinois {{Geodis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Visvalingam–Whyatt Algorithm
The Visvalingam–Whyatt algorithm, also known as the Visvalingam's algorithm, is an algorithm that decimates a curve composed of line segments to a similar curve with fewer points. Idea Given a polygonal chain (often called a Polyline), the algorithm attempts to find a similar chain composed of fewer points. Points are assigned an importance based on local conditions, and points are removed from the least important to most important. In Visvalingam's algorithm, the importance is related to the triangular area added by each point. Algorithm Given a chain of 2d points \left\ = \left\, the importance of each interior point is computed by finding the area of the triangle formed by it and its immediate neighbors. This can be done quickly using a matrix determinant. Alternatively, the equivalent formula below can be used : A_i = \frac \left, x_ y_ + x_i y_ + x_ y_ - x_ y_ - x_i y_ - x_ y_i \ The minimum importance point p_i is located and marked for removal (note that A_ and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamic Convex Hull
The dynamic convex hull problem is a class of dynamic problems in computational geometry. The problem consists in the maintenance, i.e., keeping track, of the convex hull for input data undergoing a sequence of discrete changes, i.e., when input data elements may be inserted, deleted, or modified. It should be distinguished from the kinetic convex hull, which studies similar problems for continuously moving points. Dynamic convex hull problems may be distinguished by the types of the input data and the allowed types of modification of the input data. Planar point set It is easy to construct an example for which the convex hull contains all input points, but after the insertion of a single point the convex hull becomes a triangle. And conversely, the deletion of a single point may produce the opposite drastic change of the size of the output. Therefore, if the convex hull is required to be reported in traditional way as a polygon, the lower bound for the worst-case computation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big Theta
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]