Ringel–Kotzig Conjecture
In graph theory, a graceful labeling of a graph with edges is a labeling of its vertices with some subset of the integers from 0 to inclusive, such that no two vertices share a label, and each edge is uniquely identified by the absolute difference between its endpoints, such that this magnitude lies between 1 and inclusive. Virginia Vassilevska, "Coding and Graceful Labeling of trees." SURF 2001PostScript/ref> A graph which admits a graceful labeling is called a graceful graph. The name "graceful labeling" is due to Solomon W. Golomb; this type of labeling was originally given the name β-labeling by Alexander Rosa in a 1967 paper on graph labelings.. A major open problem in graph theory is the graceful tree conjecture or Ringel–Kotzig conjecture, named after Gerhard Ringel and Anton Kotzig, and sometimes abbreviated GTC (not to be confused with Kotzig's conjecture on regularly path connected graphs). It hypothesizes that all trees are graceful. It is still an open conj ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graceful Labeling
In graph theory, a graceful labeling of a Graph (discrete mathematics), graph with edges is a graph labeling, labeling of its Vertex (graph theory), vertices with some subset of the integers from 0 to inclusive, such that no two vertices share a label, and each edge is uniquely identified by the absolute difference between its endpoints, such that this magnitude lies between 1 and inclusive.Virginia Vassilevska Williams, Virginia Vassilevska, "Coding and Graceful Labeling of trees." SURF 2001PostScript/ref> A graph which admits a graceful labeling is called a graceful graph. The name "graceful labeling" is due to Solomon W. Golomb; this type of labeling was originally given the name β-labeling by Alexander Rosa in a 1967 paper on graph labelings.. A major open problem in graph theory is the graceful tree conjecture or Ringel–Kotzig conjecture, named after Gerhard Ringel and Anton Kotzig, and sometimes abbreviated GTC (not to be confused with Kotzig's conjecture on regula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Path Graph
In the mathematical field of graph theory, a path graph (or linear graph) is a graph whose vertices can be listed in the order such that the edges are where . Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices of degree 1), while all others (if any) have degree 2. Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph. A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005). As Dynkin diagrams In algebra, path graphs appear as the Dynkin diagrams of type A. As such, they classify the root system of type A and the Weyl group of type A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. If n = 1, it is an isolated loop. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connected Graph
In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. Connected vertices and graphs In an undirected graph , two vertices and are called connected if contains a path from to . Otherwise, they are called disconnected. If the two vertices are additionally connected by a path of length (that is, they are the endpoints of a single edge), the vertices are called adjacent. A graph is said to be connected if every pair of vertices in the graph is connected. This means that there is a path between every pair of vertices. An undirected graph that is not connected is called disconnected. An undirected graph is therefore disconnected if there e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Graph
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a Set (mathematics), set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in ''n'' dimensions is equal to \sqrt. An ''n''-dimensional hypercube is more commonly referred to as an ''n''-cube or sometimes as an ''n''-dimensional cube. The term measure polytope (originally from Elte, 1912) is also used, notably in the work of H. S. M. Coxeter who also labels the hypercubes the γn polytopes. The hypercube is the special case of a hyperrectangle (also called an ''n-orthotope''). A ''unit hypercube'' is a hypercube whose side has length one unit. Often, the hypercube whose corners (or ''vertices'') are the 2''n'' points in R''n'' with each coordinate equal to 0 or 1 i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grid Graph
In graph theory, a lattice graph, mesh graph, or grid graph is a Graph (discrete mathematics), graph whose graph drawing, drawing, Embedding, embedded in some Euclidean space , forms a regular tiling. This implies that the group (mathematics), group of Bijection, bijective transformations that send the graph to itself is a lattice (group), lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid. Moreover, these terms are also commonly used for a finite section of the infinite graph, as in "an 8 × 8 square grid". The term lattice graph has also been given in the literature to various other kinds of graphs with some regular structure, such as the Cartesian product of graphs, Cartesian product of a number of complete graphs. Square grid graph A comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gear Graph
This partial list of Graph (discrete mathematics), graphs contains definitions of graphs and graph families. For collected definitions of graph theory terms that do not refer to individual graph types, such as ''vertex'' and ''path'', see Glossary of graph theory. For links to existing articles about particular kinds of graphs, see :Graphs, Graphs. Some of the finite structures considered in graph theory have names, sometimes inspired by the graph's topology, and sometimes after their discoverer. A famous example is the Petersen graph, a concrete graph on 10 vertices that appears as a minimal example or counterexample in many different contexts. Individual graphs File:Balaban 10-cage alternative drawing.svg, Balaban 10-cage File:Balaban 11-cage.svg, Balaban 11-cage File:Bidiakis cube.svg, Bidiakis cube File:Brinkmann graph LS.svg, Brinkmann graph File:Bull graph.circo.svg, Bull graph File:Butterfly graph.svg, Butterfly graph File:Chvatal graph.draw.svg, Chvátal graph File:Diamond ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wheel Graph
In graph theory, a wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. A wheel graph with vertices can also be defined as the 1-skeleton of an pyramid. Some authors write to denote a wheel graph with vertices (); other authors instead use to denote a wheel graph with vertices (), which is formed by connecting a single vertex to all vertices of a cycle of length . The former notation is used in the rest of this article and in the table on the right. Edge Set would be the edge set of a wheel graph with vertex set in which the vertex 1 is a universal vertex. Properties Wheel graphs are planar graphs, and have a unique planar embedding. More specifically, every wheel graph is a Halin graph. They are self-dual: the planar dual of any wheel graph is an isomorphic graph. Every maximal planar graph, other than ''K''4 = ''W''4, contains as a subgraph either ''W''5 or ''W''6. There is always a Hamiltonian cycle in the wheel graph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributed Computing
Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers. The components of a distributed system communicate and coordinate their actions by passing messages to one another in order to achieve a common goal. Three significant challenges of distributed systems are: maintaining concurrency of components, overcoming the lack of a global clock, and managing the independent failure of components. When a component of one system fails, the entire system does not fail. Examples of distributed systems vary from SOA-based systems to microservices to massively multiplayer online games to peer-to-peer applications. Distributed systems cost significantly more than monolithic architectures, primarily due to increased needs for additional hardware, servers, gateways, firewalls, new subnets, proxies, and so on. Also, distributed systems are prone to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brendan McKay (mathematician)
Brendan Damien McKay (born 26 October 1951) is an Australian computer scientist and mathematician. He is currently an emeritus professor in the Research School of Computer Science at the Australian National University (ANU). He has published extensively in combinatorics. Born in Melbourne, McKay received a Ph.D. in mathematics from the University of Melbourne in 1980, and was appointed assistant professor of computer science at Vanderbilt University in Nashville in the same year (1980–1983). His thesis, ''Topics in Computational Graph Theory'', was written under the direction of Derek Holton. He was awarded the Australian Mathematical Society Medal in 1990. He was elected a Fellow of the Australian Academy of Science in 1997, and appointed professor of computer science at the ANU in 2000. Mathematics McKay is the author of at least 127 refereed articles. One of McKay's main contributions has been a practical algorithm for the graph isomorphism problem and its software imple ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |