HOME





Racah Polynomial
In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients. The Racah polynomials were first defined by and are given by :p_n(x(x+\gamma+\delta+1)) = _4F_3\left begin -n &n+\alpha+\beta+1&-x&x+\gamma+\delta+1\\ \alpha+1&\gamma+1&\beta+\delta+1\\ \end;1\right Orthogonality :\sum_^N\operatorname_n(x;\alpha,\beta,\gamma,\delta) \operatorname_m(x;\alpha,\beta,\gamma,\delta)\frac \omega_y=h_n\operatorname_, :when \alpha+1=-N, :where \operatorname is the Racah polynomial, :x=y(y+\gamma+\delta+1), :\operatorname_ is the Kronecker delta function and the weight functions are :\omega_y=\frac, :and :h_n=\frac\frac\frac, :(\cdot)_n is the Pochhammer symbol. Rodrigues-type formula :\omega(x;\alpha,\beta,\gamma,\delta)\operatorname_n(\lambda(x);\alpha,\beta,\gamma,\delta)=(\gamma+\delta+1)_n\frac\omega(x;\alpha+n,\beta+n,\gamma+n,\delta), :where \nabla is the bac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ... to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. These are frequently given by the Rodrigues' formula. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Giulio Racah
Giulio (Yoel) Racah (; February 9, 1909 – August 28, 1965) was an Italian–Israeli physicist and mathematician. He was Acting President of the Hebrew University of Jerusalem from 1961 to 1962. The crater Racah on the Moon is named after him. Biography Giulio (Yoel) Racah was born in Florence, Italy. On his mother's side, Racah's family claimed to trace its ancestry in Italy back to the destruction of the Second Temple. He earned his Doctorate from the University of Florence in 1930, and continued his studies at Rome with Enrico Fermi. In 1939, due to application of Anti-Jewish laws in Italy, Racah emigrated to the British Mandate of Palestine. In the 1948 Arab–Israeli War, Racah served as deputy commander of the Israeli forces defending Mount Scopus. Racah died at the age of 56, apparently asphyxiated by gas from a faulty heater while visiting Florence. Academic and scientific career In 1937 Racah was appointed Professor of Physics at the University of Pisa. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Racah Coefficient
Wigner's 6-''j'' symbols were introduced by Eugene Paul Wigner in 1940 and published in 1965. They are defined as a sum over products of four Wigner 3-''j'' symbols, : \begin \begin j_1 & j_2 & j_3\\ j_4 & j_5 & j_6 \end &= \sum_ (-1)^ \begin j_1 & j_2 & j_3\\ -m_1 & -m_2 & -m_3 \end\times\\ &\times \begin j_1 & j_5 & j_6\\ m_1 & -m_5 & m_6 \end \begin j_4 & j_2 & j_6\\ m_4 & m_2 & -m_6 \end \begin j_4 & j_5 & j_3\\ -m_4 & m_5 & m_3 \end . \end The summation is over all six allowed by the selection rules of the 3-''j'' symbols. They are closely related to the Racah W-coefficients, which are used for recoupling 3 angular momenta, although Wigner 6-''j'' symbols have higher symmetry and therefore provide a more efficient means of storing the recoupling coefficients. Their relationship is given by: : \begin j_1 & j_2 & j_3\\ j_4 & j_5 & j_6 \end = (-1)^ W(j_1 j_2 j_5 j_4; j_3 j_6). Symmetry relat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Delta Function
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, For example, \delta_ = 0 because 1 \ne 2, whereas \delta_ = 1 because 3 = 3. The Kronecker delta appears naturally in many areas of mathematics, physics, engineering and computer science, as a means of compactly expressing its definition above. Generalized versions of the Kronecker delta have found applications in differential geometry and modern tensor calculus, particularly in formulations of gauge theory and topological field models. In linear algebra, the n\times n identity matrix \mathbf has entries equal to the Kronecker delta: I_ = \delta_ where i and j take the values 1,2,\cdots,n, and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pochhammer Symbol
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial \begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) . \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, — A reprint of the 1950 edition by Chelsea Publishing. rising sequential product, or upper factorial) is defined as \begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) . \end The value of each is taken to be 1 (an empty product) when n=0. These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n, where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used (x)_n with yet another meaning, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Backward Difference Operator
A finite difference is a mathematical expression of the form . Finite differences (or the associated difference quotients) are often used as approximations of derivatives, such as in numerical differentiation. The difference operator, commonly denoted \Delta, is the operator that maps a function to the function \Delta /math> defined by \Delta x) = f(x+1)-f(x). A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations. Certain recurrence relations can be written as difference equations by replacing iteration notation with finite differences. In numerical analysis, finite differences are widely used for approximating derivatives, and the term "finite difference" is often used as an abbreviation of "finite difference approximation of derivatives". Finite differences were introduced by Brook Taylor i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Basic Hypergeometric Function
In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x''''n'' is called hypergeometric if the ratio of successive terms ''x''''n''+1/''x''''n'' is a rational function of ''n''. If the ratio of successive terms is a rational function of ''q''''n'', then the series is called a basic hypergeometric series. The number ''q'' is called the base. The basic hypergeometric series _2\phi_1(q^,q^;q^;q,x) was first considered by . It becomes the hypergeometric series F(\alpha,\beta;\gamma;x) in the limit when base q =1. Definition There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as :\;_\phi_k \left begin a_1 & a_2 & \ldots & a_ \\ b_1 & b_2 & \ldots & b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]