R-algebroid
In mathematics, R-algebroids are constructed starting from groupoids. These are more abstract concepts than the Lie algebroids that play a similar role in the theory of Lie groupoids to that of Lie algebras in the theory of Lie groups. (Thus, a Lie algebroid can be thought of as 'a ''Lie algebra with many objects'' '). Definition An R-algebroid, R\mathsf, is constructed from a groupoid \mathsf as follows. The object set of R\mathsf is the same as that of \mathsf and R\mathsf(b,c) is the free R-module on the set \mathsf(b,c), with composition given by the usual bilinear rule, extending the composition of \mathsf. R-category A groupoid \mathsf can be regarded as a category with invertible morphisms. Then an R-category is defined as an extension of the R-algebroid concept by replacing the groupoid \mathsf in this construction with a general category C that does not have all morphisms invertible. R-algebroids ''via'' convolution products One can also define the R-algebroid, \mathsf: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebroid (other)
In mathematics, algebroid may refer to several distinct notions, which nevertheless all arise from generalising certain aspects of the theory of algebras or Lie algebras. * Algebroid branch, a formal power series branch of an algebraic curve * Algebroid cohomology * Algebroid multifunction *Courant algebroid, an object generalising Lie bialgebroids *Lie algebroid, the infinitesimal counterpart of Lie groupoids **Atiyah algebroid, a fundamental example of a Lie algebroid associated to a principal bundle *R-algebroid, a categorical construction associated to groupoids In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial fun ... {{disambig Mathematics disambiguation pages ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Algebroid
In mathematics, a Lie algebroid is a vector bundle A \rightarrow M together with a Lie bracket on its space of sections \Gamma(A) and a vector bundle morphism \rho: A \rightarrow TM, satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra. Lie algebroids play a similar same role in the theory of Lie groupoids that Lie algebras play in the theory of Lie groups: reducing global problems to infinitesimal ones. Indeed, any Lie groupoid gives rise to a Lie algebroid, which is the vertical bundle of the source map restricted at the units. However, unlike Lie algebras, not every Lie algebroid arises from a Lie groupoid. Lie algebroids were introduced in 1967 by Jean Pradines. Definition and basic concepts A Lie algebroid is a triple (A, cdot,\cdot \rho) consisting of * a vector bundle A over a manifold M * a Lie bracket cdot,\cdot/math> on its space of sections \Gamma (A) * a morphism of vector bundles \rho: A\rightarrow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higher-dimensional Algebra
In mathematics, especially (Higher category theory, higher) category theory, higher-dimensional algebra is the study of Categorification, categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra. Higher-dimensional categories A first step towards defining higher dimensional algebras is the concept of 2-category of higher category theory, followed by the more 'geometric' concept of double category. A higher level concept is thus defined as a Category (mathematics), category of categories, or super-category, which generalises to higher dimensions the notion of Category (mathematics), category – regarded as any structure which is an interpretation of Lawvere's axioms of the elementary theory of abstract categories (ETAC). Thus, a supercategory and also a functor category, super-category, can be regarded as natural extensions of the concepts of multicategory, meta-category, multicategory, and TurĂ¡n graph, multi-graph, ''k ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial function replacing the binary operation; * '' Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that . Special cases include: * '' Setoids'': sets that come with an equivalence relation, * '' G-sets'': sets equippe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebras
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras where associativity of multiplication is assumed, and non-associative algebras, where associativity is not assumed (but not excluded, either). Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operations of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hopf Algebra
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously a ( unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations. Hopf algebras occur naturally in algebraic topology, where they originated and are related to the H-space concept, in group scheme theory, in group theory (via the concept of a group ring), and in numerous other places, making them probably the most familiar type of bialgebra. Hopf algebras are also studied in their own right, with much work on specific classes of examples on the one hand and classification problems o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Groupoid
In mathematics, especially in higher-dimensional algebra and homotopy theory, a double groupoid generalises the notion of groupoid and of category to a higher dimension. Definition A double groupoid D is a higher-dimensional groupoid involving a relationship for both 'horizontal' and 'vertical' groupoid structures. (A double groupoid can also be considered as a generalization of certain higher-dimensional groups.) The geometry of squares and their compositions leads to a common representation of a ''double groupoid'' in the following diagram: where M is a set of 'points', H and V are, respectively, 'horizontal' and 'vertical' groupoids, and S is a set of 'squares' with two compositions. The composition laws for a double groupoid D make it also describable as a groupoid internal to the category of groupoids. Given two groupoids H and V over a set M, there is a double groupoid \Box(H,V) with H,V as horizontal and vertical edge groupoids, and squares given by quadruples :: \be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |