HOME
*





Quantum Reflection
Quantum reflection is a uniquely quantum phenomenon in which a compact object, such as a neutron or a small molecule, reflects smoothly and in a wavelike fashion from a much larger surface, such as a pool of mercury. In contrast, a classically behaving neutron or molecule will strike the same surface much like a thrown ball, hitting only at one atomic-scale location where it is either absorbed or scattered. Quantum reflection provides a powerful experimental demonstration of particle-wave duality, since it is the extended quantum wave packet of the particle, rather than the particle itself, that reflects from the larger surface. Definition Quantum reflection became an important branch of physics in the 21st century. In a workshop about quantum reflection,Quantum Reflection, workshop; October 22–24, 2007, Cambridge, Massachusetts, USA; http://cfa-www.harvard.edu/itamp/QuantumReflection.html the following definition of quantum reflection was suggested: Quantum reflection is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ultracold Atoms
Ultracold atoms are atoms that are maintained at temperatures close to 0 kelvin (absolute zero), typically below several tens of microkelvin (µK). At these temperatures the atom's quantum-mechanical properties become important. To reach such low temperatures, a combination of several techniques typically has to be used. First, atoms are usually trapped and pre-cooled via laser cooling in a magneto-optical trap. To reach the lowest possible temperature, further cooling is performed using evaporative cooling in a magnetic or optical trap. Several Nobel prizes in physics are related to the development of the techniques to manipulate quantum properties of individual atoms (e.g. 1995-1997, 2001, 2005, 2012, 2017). Experiments with ultracold atoms study a variety of phenomena, including quantum phase transitions, Bose–Einstein condensation (BEC), bosonic superfluidity, quantum magnetism, many-body spin dynamics, Efimov states, Bardeen–Cooper–Schrieffer (BCS) superfluidity and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magneto-optical Trap
A magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially-varying magnetic field to create a trap which can produce samples of cold, trapped, neutral atoms. Temperatures achieved in a MOT can be as low as several microkelvin, depending on the atomic species, which is two or three times below the photon recoil limit. However, for atoms with an unresolved hyperfine structure, such as ^7\mathrm, the temperature achieved in a MOT will be higher than the Doppler cooling limit. A MOT is formed from the intersection of a weak quadrupolar spatially-varying magnetic field and six circularly-polarized red-detuned optical molasses beams. As atoms travel away from the field zero at the center of the trap (halfway between the coils), the spatially-varying Zeeman shift brings an atomic transition into resonance which gives rise to a scattering force that pushes the atoms back towards the center of the trap. This is why a MOT traps atoms, and because this force aris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ridged Mirror
In atomic physics, a ridged mirror (or ridged atomic mirror, or Fresnel diffraction mirror) is a kind of atomic mirror, designed for the specular reflection of neutral particles (atoms) coming at a grazing incidence angle. In order to reduce the mean attraction of particles to the surface and increase the reflectivity, this surface has narrow ridges. Reflectivity of ridged atomic mirrors Various estimates for the efficiency of quantum reflection of waves from ridged mirror were discussed in the literature. All the estimates explicitly use the de Broglie theory about wave properties of reflected atoms. Scaling of the van der Waals force The ridges enhance the quantum reflection from the surface, reducing the effective constant ~C~ of the van der Waals attraction of atoms to the surface. Such interpretation leads to the estimate of the reflectivity : \displaystyle r \approx r_0\!\left( \frac \ell L C,\!~K\sin(\theta)\right), where ~\ell~ is width of the ridges, ~L~ is distan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although note that in quantum mechanics, A^\ast typically means the complex conjugate only, and not the conjugate transpose. Alternative characterizations H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absorption (chemistry)
In chemistry, absorption is a physical or chemical phenomenon or a process in which atoms, molecules or ions enter some bulk phase – liquid or solid material. This is a different process from adsorption, since molecules undergoing absorption are taken up by the volume, not by the surface (as in the case for adsorption). A more common definition is that "Absorption is a chemical or physical phenomenon in which the molecules, atoms and ions of the substance getting absorbed enters into the bulk phase (gas, liquid or solid) of the material in which it is taken up." A more general term is '' sorption'', which covers absorption, adsorption, and ion exchange. Absorption is a condition in which something takes in another substance. In many processes important in technology, the chemical absorption is used in place of the physical process, e.g., absorption of carbon dioxide by sodium hydroxide – such acid-base processes do not follow the Nernst partition law (see: solubilit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Electrodynamics
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction. In technical terms, QED can be described as a perturbation theory of the electromagnetic quantum vacuum. Richard Feynman called it "the jewel of physics" for its extremely accurate predictions of quantities like the anomalous magnetic moment of the electron and the Lamb shift of the energy levels of hydrogen. History The first formulation of a quantum theory describing radiation and matter interaction is attributed to British scientist Paul Dirac, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Physics B
The ''Journal of Physics B: Atomic, Molecular and Optical Physics'' is a biweekly peer-reviewed scientific journal published by IOP Publishing. It was established in 1968 from the division of the earlier title, ''Proceedings of the Physical Society''. In 2006, the ''Journal of Optics B, Journal of Optics B: Quantum and Semiclassical Optics'' was merged with the ''Journal of Physics B''. The editor-in-chief is Marc Vrakking (Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy). Scope The journal covers research on atomic physics, atomic, molecular physics, molecular, and optical physics. Topics include atomic and molecular structure, spectra and collisions, ultracold matter, quantum optics and non linear optics, quantum information, laser physics, intense laser fields, ultrafast and x-ray physics and atomic and molecular physics in plasmas. The journal publishes research papers, fast track communications, topical reviews, tutorials, and invited articles. It occasi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optical Review
''Optical Review'' is a bimonthly peer-reviewed scientific journal that was established in 1994 and is published by Springer Science+Business Media in partnership with the Optical Society of Japan. The editor-in-chief is Masahiro Yamaguchi. The journal publishes research and review papers in all subdisciplines of optical science and optical engineering. Subdisciplines include general and physical optics, spectroscopy, quantum optics, optical computing, photonics, optoelectronics, lasers, nonlinear optics, environmental optics, adaptive optics, and space optics. Optics regarding the visible spectrum, infrared, and short wavelength optics are also included. Coverage encompasses required materials as well as suitable manufacturing tools, technologies, and methodologies. Abstracting and indexing The journal is abstracted and/or indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.890. See also * ''Applied Physics Express'' * ''Ja ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planck Constant
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by h. The reduced Planck constant, or Dirac constant, equal to the constant divided by 2 \pi, is denoted by \hbar. In metrology it is used, together with other constants, to define the kilogram, the SI unit of mass. The SI units are defined in such a way that, when the Planck constant is expressed in SI units, it has the exact value The constant was first postulated by Max Planck in 1900 as part of a solution to the ultraviolet catastrophe. At the end of the 19th century, accurate measurements of the spectrum of black body radiation existed, but the distr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acceleration Of Free Fall
In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the bodies; the measurement and analysis of these rates is known as gravimetry. At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. At different points on Earth's surface, the free fall acceleration ranges from , depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as . Locations of significant variation from this value are known as gravity anomalies. This does not take into account other effects, such as buoyancy or drag. Relation to the Universal Law Newton's law of universal gravitation states that t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]