HOME





Quasi-separated Morphism
In algebraic geometry, a morphism of schemes from to is called quasi-separated if the diagonal map from to is quasi-compact (meaning that the inverse image of any quasi-compact open set is quasi-compact). A scheme is called quasi-separated if the morphism to Spec is quasi-separated. Quasi-separated algebraic spaces and algebraic stacks and morphisms between them are defined in a similar way, though some authors include the condition that is quasi-separated as part of the definition of an algebraic space or algebraic stack . Quasi-separated morphisms were introduced by as a generalization of separated morphisms. All separated morphisms (and all morphisms of Noetherian schemes) are automatically quasi-separated. Quasi-separated morphisms are important for algebraic spaces and algebraic stacks, where many natural morphisms are quasi-separated but not separated. The condition that a morphism is quasi-separated often occurs together with the condition that it is quasi-compac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gluing Schemes
In algebraic geometry, a new scheme (e.g. an algebraic variety) can be obtained by gluing existing schemes through gluing maps. Statement Suppose there is a (possibly infinite) family of schemes \_ and for pairs i, j, there are open subsets U_ and isomorphisms \varphi_ : U_ \overset\to U_. Now, if the isomorphisms are compatible in the sense: for each i, j, k, # \varphi_ = \varphi_^, # \varphi_(U_ \cap U_) = U_ \cap U_, # \varphi_ \circ \varphi_ = \varphi_ on U_ \cap U_, then there exists a scheme ''X'', together with the morphisms \psi_i : X_i \to X such that # \psi_i is an isomorphism onto an open subset of ''X'', # X = \cup_i \psi_i(X_i), # \psi_i(U_) = \psi_i(X_i) \cap \psi_j(X_j), # \psi_i = \psi_j \circ \varphi_ on U_. Examples Projective line Let X = \operatorname(k \simeq \mathbb^1, Y = \operatorname(k \simeq \mathbb^1 be two copies of the affine line over a field ''k''. Let X_t = \ = \operatorname(k , t^ be the complement of the origin and Y_u = \ defined simila ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Scheme
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Rayn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Object
In category theory, a branch of mathematics, group objects are certain generalizations of group (mathematics), groups that are built on more complicated structures than Set (mathematics), sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuity (topology), continuous. Definition Formally, we start with a category (mathematics), category ''C'' with finite products (i.e. ''C'' has a terminal object 1 and any two objects of ''C'' have a product (category theory), product). A group object in ''C'' is an object ''G'' of ''C'' together with morphisms *''m'' : ''G'' × ''G'' → ''G'' (thought of as the "group multiplication") *''e'' : 1 → ''G'' (thought of as the "inclusion of the identity element") *''inv'' : ''G'' → ''G'' (thought of as the "inversion operation") such that the following properties (modeled on the group axioms – more precisely, on the Universal algebra#G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their distributive law. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Free Action
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Group
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and only if its identity is isolated. A subgroup ''H'' of a topological group ''G'' is a discrete subgroup if ''H'' is discrete when endowed with the subspace topology from ''G''. In other words there is a neighbourhood of the identity in ''G'' containing no other element of ''H''. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not. Any group can be endowed with the discrete topology, making it a discrete topological group. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the catego ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Line With Two Origins
In geometry and topology, it is a usual axiom of a manifold to be a Hausdorff space. In general topology, this axiom is relaxed, and one studies non-Hausdorff manifolds: spaces locally homeomorphic to Euclidean space, but not necessarily Hausdorff. Examples Line with two origins The most familiar non-Hausdorff manifold is the line with two origins, or bug-eyed line. This is the quotient space of two copies of the real line, \R \times \ and \R \times \ (with a \neq b), obtained by identifying points (x,a) and (x,b) whenever x \neq 0. An equivalent description of the space is to take the real line \R and replace the origin 0 with two origins 0_a and 0_b. The subspace \R\setminus\ retains its usual Euclidean topology. And a local base of open neighborhoods at each origin 0_i is formed by the sets (U\setminus\)\cup\ with U an open neighborhood of 0 in \R. For each origin 0_i the subspace obtained from \R by replacing 0 with 0_i is an open neighborhood of 0_i homeomorphic to \R. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism Of Schemes
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. Definition By definition, a morphism of schemes is just a morphism of locally ringed spaces. Isomorphisms are defined accordingly. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties). Let ƒ:''X''→''Y'' be a morphism of schemes. If ''x'' is a point of ''X'', since ƒ is continuous, there are open affine subsets ''U'' = Spec ''A'' of ''X'' containing ''x'' and ''V'' = Spec ''B'' of ''Y'' such that ƒ(''U'') ⊆ ''V''. Then ƒ: ''U'' → ''V'' is a morphism of affine schemes and thus is induced by some ring homomorphism ''B'' → ''A'' (cf. #Affine case.) In fact, one can use this des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Scheme
In algebraic geometry, a Noetherian scheme is a scheme that admits a finite covering by open affine subsets \operatorname A_i, where each A_i is a Noetherian ring. More generally, a scheme is locally Noetherian if it is covered by spectra of Noetherian rings. Thus, a scheme is Noetherian if and only if it is locally Noetherian and compact. As with Noetherian rings, the concept is named after Emmy Noether. It can be shown that, in a locally Noetherian scheme, if  \operatorname A is an open affine subset, then ''A'' is a Noetherian ring; in particular, \operatorname A is a Noetherian scheme if and only if ''A'' is a Noetherian ring. For a locally Noetherian scheme ''X,'' the local rings \mathcal_ are also Noetherian rings. A Noetherian scheme is a Noetherian topological space. But the converse is false in general; consider, for example, the spectrum of a non-Noetherian valuation ring. The definitions extend to formal schemes. Properties and Noetherian hypotheses Having ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Stack
In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves \mathcal_ and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin. Definition Motivation One of the motivating examples of an algebraic stack is to consider a groupoid scheme (R,U,s,t,m) over a fixed scheme S. For example, if R = \mu_n\times_S\mathbb^n_S (where \mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]