HOME
*



picture info

Parabolic Cylindrical Coordinates
In mathematics, parabolic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional parabolic coordinate system in the perpendicular z-direction. Hence, the coordinate surfaces are confocal parabolic cylinders. Parabolic cylindrical coordinates have found many applications, e.g., the potential theory of edges. Basic definition The parabolic cylindrical coordinates are defined in terms of the Cartesian coordinates by: :\begin x &= \sigma \tau \\ y &= \frac \left( \tau^2 - \sigma^2 \right) \\ z &= z \end The surfaces of constant form confocal parabolic cylinders : 2 y = \frac - \sigma^2 that open towards , whereas the surfaces of constant form confocal parabolic cylinders : 2 y = -\frac + \tau^2 that open in the opposite direction, i.e., towards . The foci of all these parabolic cylinders are located along the line defined by . The radius has a simple formula as well : r = \sqrt = \frac \left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parabolic Cylindrical Coordinates
In mathematics, parabolic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional parabolic coordinate system in the perpendicular z-direction. Hence, the coordinate surfaces are confocal parabolic cylinders. Parabolic cylindrical coordinates have found many applications, e.g., the potential theory of edges. Basic definition The parabolic cylindrical coordinates are defined in terms of the Cartesian coordinates by: :\begin x &= \sigma \tau \\ y &= \frac \left( \tau^2 - \sigma^2 \right) \\ z &= z \end The surfaces of constant form confocal parabolic cylinders : 2 y = \frac - \sigma^2 that open towards , whereas the surfaces of constant form confocal parabolic cylinders : 2 y = -\frac + \tau^2 that open in the opposite direction, i.e., towards . The foci of all these parabolic cylinders are located along the line defined by . The radius has a simple formula as well : r = \sqrt = \frac \left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the nabla operator), or \Delta. In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian of a function at a point measures by how much the average value of over small spheres or balls centered at deviates from . The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749–1827), who first applied the operator to the study of celestial mechanics: the Laplacian of the gravitational potential due to a given mass density distribution is a constant multiple of that density ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curvilinear Coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name ''curvilinear coordinates'', coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved. Well-known examples of curvilinear coordinate systems in three-dimensional Euclidean space (R3) are cylindrical and spherical coordinates. A Cartesian coordinate surface in this space is a coordinate plane; for example ''z'' = 0 defines the ''x''-''y'' plane. In the same space, the coordinate surface ''r'' = 1 in spherical coordinates is the surface of a unit sphere, which is curved. The formalism of curviline ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Coordinate System
In mathematics, orthogonal coordinates are defined as a set of ''d'' coordinates q = (''q''1, ''q''2, ..., ''q''''d'') in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate surface for a particular coordinate ''q''''k'' is the curve, surface, or hypersurface on which ''q''''k'' is a constant. For example, the three-dimensional Cartesian coordinates (''x'', ''y'', ''z'') is an orthogonal coordinate system, since its coordinate surfaces ''x'' = constant, ''y'' = constant, and ''z'' = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates. Motivation While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parabolic Coordinates
Parabolic coordinates are a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal parabolas. A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas. Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges. Two-dimensional parabolic coordinates Two-dimensional parabolic coordinates (\sigma, \tau) are defined by the equations, in terms of Cartesian coordinates: : x = \sigma \tau : y = \frac \left( \tau^ - \sigma^ \right) The curves of constant \sigma form confocal parabolae : 2y = \frac - \sigma^ that open upwards (i.e., towards +y), whereas the curves of constant \tau form confocal parabolae : 2y = -\frac + \tau^ that open downwards (i.e., towards -y). The foci of all these parabolae are located at the origin. The Cartesian coordinates x and y can be converted to par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions (also called forces) of nature. Electric fields are important in many areas of physics, and are exploited in electrical technology. In atomic physics and chemistry, for instance, the electric field is the attractive force holding the atomic nucleus and electrons together in atoms. It is also the force responsible for chemical bonding between atoms that result in molecules. The electric field is defined as a vector field that associates to each point in space the electrostatic ( Coulomb) fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Helmholtz Equation
In mathematics, the eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It corresponds to the linear partial differential equation \nabla^2 f = -k^2 f, where is the Laplace operator (or "Laplacian"), is the eigenvalue, and is the (eigen)function. When the equation is applied to waves, is known as the wave number. The Helmholtz equation has a variety of applications in physics, including the wave equation and the diffusion equation, and it has uses in other sciences. Motivation and uses The Helmholtz equation often arises in the study of physical problems involving partial differential equations (PDEs) in both space and time. The Helmholtz equation, which represents a time-independent form of the wave equation, results from applying the technique of separation of variables to reduce the complexity of the analysis. For example, consider the wave equation \left(\nabla^2-\frac\frac\right) u(\mathbf,t)=0. Separation of variables begins by assuming th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace's Equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nabla \cdot \nabla = \nabla^2 is the Laplace operator,The delta symbol, Δ, is also commonly used to represent a finite change in some quantity, for example, \Delta x = x_1 - x_2. Its use to represent the Laplacian should not be confused with this use. \nabla \cdot is the divergence operator (also symbolized "div"), \nabla is the gradient operator (also symbolized "grad"), and f (x, y, z) is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function. If the right-hand side is specified as a given function, h(x, y, z), we have \Delta f = h. This is called Poisson's equation, a generalization of Laplace's equation. Laplace's equation and Poisson's equation are the simplest exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equations
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to how is thought of as an unknown number to be solved for in an algebraic equation like . However, it is usually impossible to write down explicit formulas for solutions of partial differential equations. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity, and stability. Among the many open questions are the e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parabolic Cylinder Functions
In mathematics, the parabolic cylinder functions are special functions defined as solutions to the differential equation This equation is found when the technique of separation of variables is used on Laplace's equation when expressed in parabolic cylindrical coordinates. The above equation may be brought into two distinct forms (A) and (B) by completing the square and rescaling , called H. F. Weber's equations: and If f(a,z) is a solution, then so are f(a,-z), f(-a,iz)\textf(-a,-iz). If f(a,z)\, is a solution of equation (), then f(-ia,ze^) is a solution of (), and, by symmetry, f(-ia,-ze^), f(ia,-ze^)\textf(ia,ze^) are also solutions of (). Solutions There are independent even and odd solutions of the form (). These are given by (following the notation of Abramowitz and Stegun (1965)): y_1(a;z) = \exp(-z^2/4) \;_1F_1 \left(\tfrac12a+\tfrac14; \; \tfrac12\; ; \; \frac\right)\,\,\,\,\,\, (\mathrm) and y_2(a;z) = z\exp(-z^2/4) \;_1F_1 \left(\tfrac12a+\tfrac34; \; \tfr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Separation Of Variables
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation. Ordinary differential equations (ODE) Suppose a differential equation can be written in the form :\frac f(x) = g(x)h(f(x)) which we can write more simply by letting y = f(x): :\frac=g(x)h(y). As long as ''h''(''y'') ≠ 0, we can rearrange terms to obtain: : = g(x) \, dx, so that the two variables ''x'' and ''y'' have been separated. ''dx'' (and ''dy'') can be viewed, at a simple level, as just a convenient notation, which provides a handy mnemonic aid for assisting with manipulations. A formal definition of ''dx'' as a differential (infinitesimal) is somewhat advanced. Alternative notation Those who dislike Leibniz's notation may prefer to write this as :\frac \frac = g(x), but tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conicoid
In geometry, a (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the ''apex'' or ''vertex'' — and any point of some fixed space curve — the ''directrix'' — that does not contain the apex. Each of those lines is called a ''generatrix'' of the surface. Every conic surface is ruled and developable. In general, a conical surface consists of two congruent unbounded halves joined by the apex. Each half is called a nappe, and is the union of all the rays that start at the apex and pass through a point of some fixed space curve. (In some cases, however, the two nappes may intersect, or even coincide with the full surface.) Sometimes the term "conical surface" is used to mean just one nappe. If the directrix is a circle C, and the apex is located on the circle's ''axis'' (the line that contains the center of C and is perpendicular to its plane), one obtains the ''right circular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]