HOME





Pseudo-abelian Category
In mathematics, specifically in category theory, a pseudo-abelian category is a category that is preadditive and is such that every idempotent has a kernel. Recall that an idempotent morphism p is an endomorphism of an object with the property that p\circ p = p. Elementary considerations show that every idempotent then has a cokernel.Lars Brünjes, Forms of Fermat equations and their zeta functions, Appendix A The pseudo-abelian condition is stronger than preadditivity, but it is weaker than the requirement that every morphism have a kernel and cokernel, as is true for abelian categories. Synonyms in the literature for pseudo-abelian include pseudoabelian and Karoubian. Examples Any abelian category, in particular the category Ab of abelian groups, is pseudo-abelian. Indeed, in an abelian category, ''every'' morphism has a kernel. The category of rngs (not rings!) together with multiplicative morphisms is pseudo-abelian. A more complicated example is the category of Chow mot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, . Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Mac Lane says Alexander Grothendieck defined the abelian category, but there is a reference that says Eilenberg's disciple, Buchsbaum, proposed the concept in his PhD thesis, and Groth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Karoubi Envelope
In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo-abelian category, hence for additive categories, the construction is sometimes called the pseudo-abelian completion. It is named for the French mathematician Max Karoubi. Given a category C, an idempotent of C is an endomorphism :e: A \rightarrow A with :e\circ e = e. An idempotent ''e'': ''A'' → ''A'' is said to split if there is an object ''B'' and morphisms ''f'': ''A'' → ''B'', ''g'' : ''B'' → ''A'' such that ''e'' = ''g'' ''f'' and 1''B'' = ''f'' ''g''. The Karoubi envelope of C, sometimes written Split(C), is the category whose objects are pairs of the form (''A'', ''e'') where ''A'' is an object of C and e : A \rightarrow A is an idempotent of C, and whose morphisms are the triples : (e, f, e^): (A, e) \rightarrow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chow Motive
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety. In the formulation of Grothendieck for smooth projective varieties, a motive is a triple (X, p, m), where X is a smooth projective variety, p: X \vdash X is an idempotent correspondence, and ''m'' an integer; however, such a triple contains almost no information outside the context of Grothendieck's category of pure motives, where a morphism from (X, p, m) to (Y, q, n) is given by a correspondence of degree n-m. A more object-focused approach is taken by Pierre Deligne in ''Le Groupe Fondamental de la Droite Projective Moins Trois Points''. In that article, a motive is a "system of realisations" – that is, a tuple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rng (algebra)
In mathematics, and more specifically in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a ring (mathematics), ring, but without assuming the existence of a multiplicative identity. The term ''rng'', pronounced like ''rung'' (IPA: ), is meant to suggest that it is a ring without ''i'', that is, without the requirement for an identity element. There is no consensus in the community as to whether the existence of a multiplicative identity must be one of the ring axioms (see '). The term ''rng'' was coined to alleviate this ambiguity when people want to refer explicitly to a ring without the axiom of multiplicative identity. A number of algebras of functions considered in Mathematical analysis, analysis are not unital, for instance the algebra of functions decreasing to zero at infinity, especially those with compact support on some (non-compact space, compact) space. Rngs appear in the following chain of subcl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Categories
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, . Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Mac Lane says Alexander Grothendieck defined the abelian category, but there is a reference that says Eilenberg's disciple, Buchsbaum, proposed the concept in his PhD thesis, and Grothendie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cokernel
The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain). Intuitively, given an equation that one is seeking to solve, the cokernel measures the ''constraints'' that must satisfy for this equation to have a solution – the obstructions to a solution – while the kernel measures the ''degrees of freedom'' in a solution, if one exists. This is elaborated in intuition, below. More generally, the cokernel of a morphism in some category (e.g. a homomorphism between groups or a bounded linear operator between Hilbert spaces) is an object and a morphism such that the composition is the zero morphism of the category, and furthermore is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Endomorphism
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a group is a group homomorphism . In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set ''S'' to itself. In any category, the composition of any two endomorphisms of is again an endomorphism of . It follows that the set of all endomorphisms of forms a monoid, the full transformation monoid, and denoted (or to emphasize the category ). Automorphisms An invertible endomorphism of is called an automorphism. The set of all automorphisms is a subset of with a group structure, called the automorphism group of and denoted . In the following diagram, the arrows denote implication: Endomorphism rings Any two endomorphisms of an abelian group, , can be ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]