Probabilistic-serial Procedure
A simultaneous eating algorithm (SE) is an algorithm for allocating divisible objects among agents with ordinal preferences. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies SD-efficiency - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for ''at least one'' vector of additive utility functions consistent with the agents' item rankings). SE is parametrized by the "eating speed" of each agent. If all agents are given the same eating speed, then the SE allocation satisfies SD-envy-freeness - a strong ordinal variant of envy-freeness (it means that the allocation is envy-free for ''all'' vectors of additive utility functions consistent with the agents' item rankings). This particular variant of SE is called the Probabilistic Serial rule (PS). SE was developed by Hervé Moulin and Anna Bogomolnaia as a sol ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Ordinal Preferences
In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask ''how much'' better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility. For example, suppose George tells us that "I prefer A to B and B to C". George's preferences can be represented by a function ''u'' such that: :u(A)=9, u(B)=8, u(C)=1 But critics of cardinal utility claim the only meaningful message of this function is the order u(A)>u(B)>u(C); the actual numbers are meaningless. Hence, George's preferences can also be represented by the following function ''v'': :v(A)=9, v(B)=2, v(C)=1 The functions ''u'' and ''v'' are ordinally equivalent – they represent George's preferences equally well. Ordinal utility contrast ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Strategyproofness
In mechanism design, a strategyproof (SP) mechanism is a game form in which each player has a weakly- dominant strategy, so that no player can gain by "spying" over the other players to know what they are going to play. When the players have private information (e.g. their type or their value to some item), and the strategy space of each player consists of the possible information values (e.g. possible types or values), a truthful mechanism is a game in which revealing the true information is a weakly-dominant strategy for each player. An SP mechanism is also called dominant-strategy-incentive-compatible (DSIC), to distinguish it from other kinds of incentive compatibility. A SP mechanism is immune to manipulations by individual players (but not by coalitions). In contrast, in a group strategyproof mechanism, no group of people can collude to misreport their preferences in a way that makes every member better off. In a strong group strategyproof mechanism, no group of people can c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Group Envy-freeness
Group envy-freeness (also called: coalition fairness) is a criterion for fair division. A group-envy-free division is a division of a resource among several partners such that every group of partners feel that their allocated share is at least as good as the share of any other group with the same size. The term is used particularly in problems such as fair resource allocation, fair cake-cutting and fair item allocation. Group-envy-freeness is a very strong fairness requirement: a group-envy-free allocation is both envy-free and Pareto efficient, but the opposite is not true. Definitions Consider a set of ''n'' agents. Each agent ''i'' receives a certain allocation ''Xi'' (e.g. a piece of cake or a bundle of resources). Each agent ''i'' has a certain subjective preference relation <''i'' over pieces/bundles (i.e. means that agent ''i'' prefers piece ''X'' to piece ''Y''). Consider a group ''G'' of the agents, with its current allocation [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Separation Oracle
A separation oracle (also called a cutting-plane oracle) is a concept in the mathematical theory of convex optimization. It is a method to describe a convex set that is given as an input to an optimization algorithm. Separation oracles are used as input to ellipsoid methods. Definition Let ''K'' be a convex and compact set in R''n''. A strong separation oracle for ''K'' is an oracle (black box) that, given a vector ''y'' in R''n'', returns one of the following: *Assert that ''y'' is in ''K''. * Find a hyperplane that separates ''y'' from ''K'': a vector a in R''n'', such that a\cdot y > a\cdot x for all ''x'' in ''K''. A strong separation oracle is completely accurate, and thus may be hard to construct. For practical reasons, a weaker version is considered, which allows for small errors in the boundary of ''K'' and the inequalities. Given a small error tolerance ''d''>0, we say that: * A vector ''y'' is ''d-near K'' if its Euclidean distance from ''K'' is at most ''d''; ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Social Choice Theory
Social choice theory is a branch of welfare economics that extends the Decision theory, theory of rational choice to collective decision-making. Social choice studies the behavior of different mathematical procedures (social welfare function, social welfare functions) used to combine individual preferences into a coherent whole.Amartya Sen (2008). "Social Choice". ''The New Palgrave Dictionary of Economics'', 2nd EditionAbstract & TOC./ref> It contrasts with political science in that it is a Normative economics, normative field that studies how a society can make good decisions, whereas political science is a Positive economics, descriptive field that observes how societies actually do make decisions. While social choice began as a branch of economics and decision theory, it has since received substantial contributions from mathematics, philosophy, political science, and game theory. Real-world examples of social choice rules include constitution, constitutions and Parliamentary ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Leximin Order
In mathematics, leximin order is a total preorder on finite-dimensional vectors. A more accurate but less common term is leximin preorder. The leximin order is particularly important in social choice theory and fair division. Definition A vector x = (''x''1, ..., ''x''''n'') is ''leximin-larger'' than a vector y = (''y''1, ..., ''y''''n'') if one of the following holds: * The smallest element of x is larger than the smallest element of y; * The smallest elements of both vectors are equal, and the second-smallest element of x is larger than the second-smallest element of y; * ... * The ''k'' smallest elements of both vectors are equal, and the (''k''+1)-smallest element of x is larger than the (''k''+1)-smallest element of y. Examples The vector (3,5,3) is leximin-larger than (4,2,4), since the smallest element in the former is 3 and in the latter is 2. The vector (4,2,4) is leximin-larger than (5,3,2), since the smallest elements in both are 2, but the second-smallest elem ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Network Flow Problem
In combinatorial optimization, network flow problems are a class of computational problems in which the input is a flow network (a graph with numerical capacities on its edges), and the goal is to construct a flow, numerical values on each edge that respect the capacity constraints and that have incoming flow equal to outgoing flow at all vertices except for certain designated terminals. Specific types of network flow problems include: *The maximum flow problem, in which the goal is to maximize the total amount of flow out of the source terminals and into the sink terminals *The minimum-cost flow problem, in which the edges have costs as well as capacities and the goal is to achieve a given amount of flow (or a maximum flow) that has the minimum possible cost *The multi-commodity flow problem, in which one must construct multiple flows for different commodities whose total flow amounts together respect the capacities * Nowhere-zero flow, a type of flow studied in combinatorics in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Random Priority Item Allocation
Random priority (RP), also called Random serial dictatorship (RSD), is a procedure for fair random assignment - dividing indivisible items fairly among people. Suppose n partners have to divide n (or fewer) different items among them. Since the items are indivisible, some partners will necessarily get the less-preferred items (or no items at all). RSD attempts to insert fairness into this situation in the following way. Draw a random permutation of the agents from the uniform distribution. Then, let them successively choose an object in that order (so the first agent in the ordering gets first pick and so on). Properties RSD is a truthful mechanism when the number of items is at most the number of agents, since you only have one opportunity to pick an item, and the obviously dominant strategy in this opportunity is to pick the best available item. RSD always yields an ex-post Pareto efficient (PE) outcome. Moreover, in an assignment problem, every deterministic PE assignment is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Maximin Strategy
In game theory, a simultaneous game or static game is a game where each player chooses their action without knowledge of the actions chosen by other players. Simultaneous games contrast with sequential games, which are played by the players taking turns (moves alternate between players). In other words, both players normally act at the same time in a simultaneous game. Even if the players do not act at the same time, both players are uninformed of each other's move while making their decisions. Normal form representations are usually used for simultaneous games. Given a continuous game, players will have different information sets if the game is simultaneous than if it is sequential because they have less information to act on at each step in the game. For example, in a two player continuous game that is sequential, the second player can act in response to the action taken by the first player. However, this is not possible in a simultaneous game where both players act at the sam ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Risk Aversion
In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more certain outcome. Risk aversion explains the inclination to agree to a situation with a lower average payoff that is more predictable rather than another situation with a less predictable payoff that is higher on average. For example, a risk-averse investor might choose to put their money into a bank account with a low but guaranteed interest rate, rather than into a stock that may have high expected returns, but also involves a chance of losing value. Example A person is given the choice between two scenarios: one with a guaranteed payoff, and one with a risky payoff with same average value. In the former scenario, the person receives $50. In the uncertain scenario, a coin is flipped to decide whether the person receives $100 or nothing. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Nash Equilibrium
In game theory, the Nash equilibrium is the most commonly used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed). The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly. If each player has chosen a strategy an action plan based on what has happened so far in the game and no one can increase one's own expected payoff by changing one's strategy while the other players keep theirs unchanged, then the current set of strategy choices constitutes a Nash equilibrium. If two players Alice and Bob choose strategies A and B, (A, B) is a Nash equilibrium if Alice has no other strategy available that does better than A at maximizing her payoff in response to Bob choosing B, and Bob has no other strategy available that does better than B at maximizing his payoff in response to Alice c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |