Predictive Model Markup Language
The Predictive Model Markup Language (PMML) is an XML-based predictive model interchange format conceived by Robert Lee Grossman, then the director of the National Center for Data Mining at the University of Illinois at Chicago. PMML provides a way for analytic applications to describe and exchange predictive models produced by data mining and machine learning algorithms. It supports common models such as logistic regression and other feedforward neural networks. Version 0.9 was published in 1998. Subsequent versions have been developed by the Data Mining Group. Since PMML is an XML-based standard, the specification comes in the form of an XML schema. PMML itself is a mature standard with over 30 organizations having announced products supporting PMML. PMML components A PMML file can be described by the following components: * Header: contains general information about the PMML document, such as copyright information for the model, its description, and information about ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Portable Format For Analytics
The Portable Format for Analytics (PFA) is a JSON-based Predictive modelling, predictive model interchange format conceived and developed by Jim Pivarski. PFA provides a way for analytic applications to describe and exchange Predictive modelling, predictive models produced by analytics and machine learning algorithms. It supports common models such as logistic regression and decision trees. Version 0.8 was published in 2015. Subsequent versions have been developed by the Data Mining Group. As a predictive model interchange format developed by the Data Mining Group, PFA is complementary to the DMG's XML-based standard called the Predictive Model Markup Language or Predictive Model Markup Language, PMML. Release history Data Mining Group The Data Mining Group is a consortium managed by the Center for Computational Science Research, Inc., a nonprofit founded in 2008. Examples * reverse array: # reverse input array of doubles input: output: action: - let: - let ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
K-nearest Neighbors Algorithm
In statistics, the ''k''-nearest neighbors algorithm (''k''-NN) is a Non-parametric statistics, non-parametric supervised learning method. It was first developed by Evelyn Fix and Joseph Lawson Hodges Jr., Joseph Hodges in 1951, and later expanded by Thomas M. Cover, Thomas Cover. Most often, it is used for statistical classification, classification, as a ''k''-NN classifier, the output of which is a class membership. An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its ''k'' nearest neighbors (''k'' is a positive integer, typically small). If ''k'' = 1, then the object is simply assigned to the class of that single nearest neighbor. The ''k''-NN algorithm can also be generalized for regression analysis, regression. In ''-NN regression'', also known as ''nearest neighbor smoothing'', the output is the property value for the object. This value is the average of the values of ''k'' nearest neighbo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Proportional Hazards Models
Proportional hazards models are a class of survival models in statistics. Survival models relate the time that passes, before some event occurs, to one or more covariates that may be associated with that quantity of time. In a proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative with respect to the hazard rate. The hazard rate at time t is the probability per short time d''t'' that an event will occur between t and t + dt given that up to time t no event has occurred yet. For example, taking a drug may halve one's hazard rate for a stroke occurring, or, changing the material from which a manufactured component is constructed, may double its hazard rate for failure. Other types of survival models such as accelerated failure time models do not exhibit proportional hazards. The accelerated failure time model describes a situation where the biological or mechanical life history of an event is accelerated (or decelerated). Background ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Association Rule
Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness.Piatetsky-Shapiro, Gregory (1991), ''Discovery, analysis, and presentation of strong rules'', in Piatetsky-Shapiro, Gregory; and Frawley, William J.; eds., ''Knowledge Discovery in Databases'', AAAI/MIT Press, Cambridge, MA. In any given transaction with a variety of items, association rules are meant to discover the rules that determine how or why certain items are connected. Based on the concept of strong rules, Rakesh Agrawal, Tomasz Imieliński and Arun Swami introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For example, the rule \ \Rightarrow \ found in the sales data of a supermarket would indicate that if a customer buy ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Support Vector Machines
In machine learning, support vector machines (SVMs, also support vector networks) are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories, SVMs are one of the most studied models, being based on statistical learning frameworks of VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974). In addition to performing linear classification, SVMs can efficiently perform non-linear classification using the ''kernel trick'', representing the data only through a set of pairwise similarity comparisons between the original data points using a kernel function, which transforms them into coordinates in a higher-dimensional feature space. Thus, SVMs use the kernel trick to implicitly map their inputs into high-dimensional feature spaces, where linear classification can be performed. Being max-margin models, SVMs are resilient to noisy data (e.g., misclassified examples). ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Multi-class Classification
In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, peach, orange, or an apple is a multiclass classification problem, with four possible classes (banana, peach, orange, apple), while deciding on whether an image contains an apple or not is a binary classification problem (with the two possible classes being: apple, no apple). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies. Multiclass classification should not be confused with multi-label classification, where multiple labels are to be predicted for eac ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Spectral Density Estimation
In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities. Some SDE techniques assume that a signal is composed of a limited (usually small) number of generating frequencies plus noise and seek to find the location and intensity of the generated frequencies. Others make no assumption on the number of components and seek to estimate the whole generating spectrum. Overview Spectrum analysis, also referred to as frequency domain analysis or spectral density estimation, is the technical process of decomposing a complex signal into s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Seasonal Adjustment
Seasonal adjustment or deseasonalization is a statistical method for removing the Seasonality, seasonal component of a time series. It is usually done when wanting to analyse the trend, and cyclical deviations from trend, of a time series independently of the seasonal components. Many economic phenomena have seasonal cycles, such as Pork cycle, agricultural production, (crop yields fluctuate with the seasons) and consumer consumption (increased personal spending leading up to Christmas). It is necessary to adjust for this component in order to understand underlying trends in the economy, so official statistics are often adjusted to remove seasonal components. Typically, seasonally adjusted data is reported for unemployment rates to reveal the underlying trends and cycles in labor markets. Time series components The investigation of many economic time series becomes problematic due to seasonal fluctuations. Time series are made up of four components: *S_t: The seasonal component * ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
ARIMA
Arima, officially The Royal Chartered Borough of Arima is the easternmost and second largest in area of the three boroughs of Trinidad and Tobago. It is geographically adjacent to Sangre Grande and Arouca at the south central foothills of the Northern Range. To the south is the Caroni–Arena Dam. Coterminous with Town of Arima since 1888, the borough of Arima is the fourth-largest municipality in population in the country (after Port of Spain, Chaguanas and San Fernando). The census estimated it had 33,606 residents in 2011. In 1887, the town petitioned Queen Victoria for municipal status as part of the celebration for the Golden Jubilee of Queen Victoria. This was granted in the following year, and Arima became a Royal Borough on 1 August 1888. Historically the third-largest town of Trinidad and Tobago, Arima is fourth since Chaguanas became the largest town in the country. History Contrary to the belief that the city is named after the Arawak word for "water", roote ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Smoothing
In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing, the data points of a signal are modified so individual points higher than the adjacent points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal. Smoothing may be used in two important ways that can aid in data analysis (1) by being able to extract more information from the data as long as the assumption of smoothing is reasonable and (2) by being able to provide analyses that are both flexible and robust. Many different algorithms are used in smoothing. Compared to curve fitting Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: * curve fitting often involves the use of an explicit functio ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |