Positive Cone Of An Ordered Vector Space
   HOME



picture info

Positive Cone Of An Ordered Vector Space
In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations. Definition Given a vector space X over the real numbers \Reals and a preorder \,\leq\, on the set X, the pair (X, \leq) is called a preordered vector space and we say that the preorder \,\leq\, is compatible with the vector space structure of X and call \,\leq\, a vector preorder on X if for all x, y, z \in X and r \in \Reals with r \geq 0 the following two axioms are satisfied # x \leq y implies x + z \leq y + z, # y \leq x implies r y \leq r x. If \,\leq\, is a partial order compatible with the vector space structure of X then (X, \leq) is called an ordered vector space and \,\leq\, is called a vector partial order on X. The two axioms imply that translations and positive homotheties are automorphisms of the order structure and the mapping x \mapsto -x is an isomorphism to the dual order structure. Or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ordered Space Illustration
Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of different ways * Hierarchy, an arrangement of items that are represented as being "above", "below", or "at the same level as" one another * an action or inaction that must be obeyed, mandated by someone in authority People * Orders (surname) Arts, entertainment, and media * Order (film), ''Order'' (film), a 2005 Russian film * Order (album), ''Order'' (album), a 2009 album by Maroon * "Order", a 2016 song from ''Brand New Maid'' by Band-Maid * Orders (1974 film), ''Orders'' (1974 film), a film by Michel Brault * Orders (Star Wars: The Clone Wars), "Orders" (''Star Wars: The Clone Wars'') Business * Blanket order, a purchase order to allow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Cone
In linear algebra, a cone—sometimes called a linear cone to distinguish it from other sorts of cones—is a subset of a real vector space that is closed under positive scalar multiplication; that is, C is a cone if x\in C implies sx\in C for every . This is a broad generalization of the standard cone in Euclidean space. A convex cone is a cone that is also closed under addition, or, equivalently, a subset of a vector space that is closed under linear combinations with positive coefficients. It follows that convex cones are convex sets. The definition of a convex cone makes sense in a vector space over any ordered field, although the field of real numbers is used most often. Definition A subset C of a vector space is a cone if x\in C implies sx\in C for every s>0. Here s>0 refers to (strict) positivity in the scalar field. Competing definitions Some other authors require ,\infty)C\subset C or even 0\in C. Some require a cone to be convex and/or satisfy C\cap-C\subset\. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Dual
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ahn 1927 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Bound Dual
In mathematics, specifically in order theory and functional analysis, the order bound dual of an ordered vector space X is the set of all linear functionals on X that map order intervals, which are sets of the form , b:= \, to bounded sets. The order bound dual of X is denoted by X^. This space plays an important role in the theory of ordered topological vector spaces. Canonical ordering An element g of the order bound dual of X is called positive if x \geq 0 implies \operatorname(f(x)) \geq 0. The positive elements of the order bound dual form a cone that induces an ordering on X^ called the . If X is an ordered vector space whose positive cone C is generating (meaning X = C - C) then the order bound dual with the canonical ordering is an ordered vector space. Properties The order bound dual of an ordered vector spaces contains its order dual. If the positive cone of an ordered vector space X is generating and if for all positive x and x we have , x+ , y= , x + y T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Functional
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the set of all linear functionals from to is itself a vector space over with addition and scalar multiplication defined pointwise. This space is called the dual space of , or sometimes the algebraic dual space, when a topological dual space is also considered. It is often denoted , p. 19, §3.1 or, when the field is understood, V^*; other notations are also used, such as V', V^ or V^. When vectors are represented by column vectors (as is common when a basis is fixed), then linear functionals are represented as row vectors, and their values on specific vectors are given by matrix products (with the row vector on the left). Examples T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absorbing Set
In functional analysis and related areas of mathematics an absorbing set in a vector space is a set S which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset. Definition Notation for scalars Suppose that X is a vector space over the field \mathbb of real numbers \R or complex numbers \Complex, and for any -\infty \leq r \leq \infty, let B_r = \ \quad \text \quad B_ = \ denote the ''open ball'' (respectively, the ''closed ball'') of radius r in \mathbb centered at 0. Define the product of a set K \subseteq \mathbb of scalars with a set A of vectors as K A = \, and define the product of K \subseteq \mathbb with a single vector x as K x = \. Preliminaries Balanced core and balanced hull A subset S of X is said to be '' '' if a s \in S for all s \in S and all scalars a satisfying , a, \leq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Unit
An order unit is an element of an ordered vector space which can be used to bound all elements from above. In this way (as seen in the first example below) the order unit generalizes the unit element in the reals. According to H. H. Schaefer, "most of the ordered vector spaces occurring in analysis do not have order units." Definition For the ordering cone K \subseteq X in the vector space X, the element e \in K is an order unit (more precisely a K-order unit) if for every x \in X there exists a \lambda_x > 0 such that \lambda_x e - x \in K (that is, x \leq_K \lambda_x e). Equivalent definition The order units of an ordering cone K \subseteq X are those elements in the algebraic interior of K; that is, given by \operatorname(K). Examples Let X = \R be the real numbers and K = \R_+ = \, then the unit element 1 is an . Let X = \R^n and K = \R^n_+ = \left\, then the unit element \vec = (1, \ldots, 1) is an . Each interior point of the positive cone of an ordered topolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Balanced Set
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field \mathbb with an absolute value function , \cdot , ) is a set S such that a S \subseteq S for all scalars a satisfying , a, \leq 1. The balanced hull or balanced envelope of a set S is the smallest balanced set containing S. The balanced core of a set S is the largest balanced set contained in S. Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set. Definition Let X be a vector space over the field \mathbb of real or complex numbers. Notation If S is a set, a is a scalar, and B \subseteq \mathbb then let a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimension (vector Space)
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a Basis (linear algebra), basis of ''V'' over its base Field (mathematics), field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is wiktionary:finite, finite, and if its dimension is infinity, infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as [V : F], read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any Field (mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Order
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, as typically construed, states that given two positive numbers x and y, there is an integer n such that nx > y. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''comparable'', in the sens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Order
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a ( strongly connected, formerly called totality). Requirements 1. to 3. just make up the definition of a partial order. Reflexivity (1.) already follows from strong connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders. Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, toset and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but generally refers to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proper Cone
In linear algebra, a cone—sometimes called a linear cone to distinguish it from other sorts of cones—is a subset of a real vector space that is closed under positive scalar multiplication; that is, C is a cone if x\in C implies sx\in C for every . This is a broad generalization of the standard cone in Euclidean space. A convex cone is a cone that is also closed under addition, or, equivalently, a subset of a vector space that is closed under linear combinations with positive coefficients. It follows that convex cones are convex sets. The definition of a convex cone makes sense in a vector space over any ordered field, although the field of real numbers is used most often. Definition A subset C of a vector space is a cone if x\in C implies sx\in C for every s>0. Here s>0 refers to (strict) positivity in the scalar field. Competing definitions Some other authors require ,\infty)C\subset C or even 0\in C. Some require a cone to be convex and/or satisfy C\cap-C\subset\. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]