Polar Topology
In functional analysis and related areas of mathematics a polar topology, topology of \mathcal-convergence or topology of uniform convergence on the sets of \mathcal is a method to define locally convex topologies on the vector spaces of a pairing. Preliminaries A pairing is a triple (X, Y, b) consisting of two vector spaces over a field \mathbb (either the real numbers or complex numbers) and a bilinear map b : X \times Y \to \mathbb. A dual pair or dual system is a pairing (X, Y, b) satisfying the following two separation axioms: # Y separates/distinguishes points of X: for all non-zero x \in X, there exists y \in Y such that b(x, y) \neq 0, and # X separates/distinguishes points of Y: for all non-zero y \in Y, there exists x \in X such that b(x, y) \neq 0. Polars The polar or absolute polar of a subset A \subseteq X is the set :A^ := \left\. Dually, the polar or absolute polar of a subset B \subseteq Y is denoted by B^, and defined by :B^ := \left\. In this case, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neighborhood Basis
In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter \mathcal(x) for a point x in a topological space is the collection of all neighbourhoods of x. Definitions Neighbourhood of a point or set An of a point (or subset) x in a topological space X is any open subset U of X that contains x. A is any subset N \subseteq X that contains open neighbourhood of x; explicitly, N is a neighbourhood of x in X if and only if there exists some open subset U with x \in U \subseteq N. Equivalently, a neighborhood of x is any set that contains x in its topological interior. Importantly, a "neighbourhood" does have to be an open set; those neighbourhoods that also happen to be open sets are known as "open neighbourhoods." Similarly, a neighbourhood that is also a closed (respectively, compact, connected, etc.) set is called a (respectively, , , etc.). There are many other types of neighbourhoods that are used i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Comparison Of Topologies
In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.) For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology". Let ''τ''1 and ''τ''2 be two topologies on a set ''X'' such that ''τ''1 is contained in ''τ''2: :\tau_1 \subseteq \tau_2. That is, every element of ''τ''1 is also an element of ''τ''2. Then the topology ''τ''1 is said to b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Without Loss Of Generality
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate the assumption that what follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. For example, if some property ''P''(''x'',''y'') of real numbers is known to be symmetric in ''x'' and ''y'', namely that ''P''(''x'',''y'') is equivalent to ''P''(''y'',''x''), then in proving that ''P''(''x'',''y'') holds for every ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Span
In mathematics, the linear span (also called the linear hull or just span) of a set S of elements of a vector space V is the smallest linear subspace of V that contains S. It is the set of all finite linear combinations of the elements of , and the intersection of all linear subspaces that contain S. It is often denoted pp. 29-30, §§ 2.5, 2.8 or \langle S \rangle. For example, in geometry, two linearly independent vectors span a plane. To express that a vector space is a linear span of a subset , one commonly uses one of the following phrases: spans ; is a spanning set of ; is spanned or generated by ; is a generator set or a generating set of . Spans can be generalized to many mathematical structures, in which case, the smallest substructure containing S is generally called the substructure ''generated'' by S. Definition Given a vector space over a field , the span of a set of vectors (not necessarily finite) is defined to be the intersection of all subsp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topologies On Spaces Of Linear Maps
In mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs). Topologies of uniform convergence on arbitrary spaces of maps Throughout, the following is assumed: T is any non-empty set and \mathcal is a non-empty collection of subsets of T directed by subset inclusion (i.e. for any G, H \in \mathcal there exists some K \in \mathcal such that G \cup H \subseteq K). Y is a topological vector space (not necessarily Hausdorff or locally convex). \mathcal is a basis of neighborhoods of 0 in Y. F is a vector subspace of Y^T = \prod_ Y,Because T is just a set that is not yet assumed to be e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Filters In Topology
In topology, filters can be used to study topological spaces and define basic topological notions such as convergence (topology), convergence, Continuous map (topology), continuity, Compact space, compactness, and more. Filter (set theory), Filters, which are special Family of sets, families of subsets of some given set, also provide a common framework for defining various types of Limit of a function, limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called have many useful technical properties and they may often be used in place of arbitrary filters. Filters have generalizations called (also known as ) and , all of which appear naturally and repeatedly throughout topology. Examples include Neighbourhood system, neighborhood filters/Neighborhood base, bases/subbases and Uniform space, uniformities. Every filter is a prefilter and both are filter subbases. Every prefilter and filter subbase is con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Net (mathematics)
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of analysis and topology, where they are used to characterize many important topological properties that (in general), sequences are unable to characterize (this shortcoming of sequences motivated the study of sequential spaces and Fréchet–Urysohn spaces). Nets are in one-to-one correspondence with filters. History The concept of a net was first introduced by E. H. Moore and Herman L. Smith in 1922. The term "net" was coined by John L. Kelley. The related concept of a filter was developed in 1937 by Henri Cartan. Definitions A directed set is a non-empty set A together with a preorder, typically automatically assumed to be denoted by \,\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolutely Convex
In mathematics, a subset ''C'' of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. Definition A subset S of a real or complex vector space X is called a ' and is said to be ', ', and ' if any of the following equivalent conditions is satisfied: S is a convex and balanced set. for any scalars a and b, if , a, + , b, \leq 1 then a S + b S \subseteq S. for all scalars a, b, and c, if , a, + , b, \leq , c, , then a S + b S \subseteq c S. for any scalars a_1, \ldots, a_n and c, if , a_1, + \cdots + , a_n, \leq , c, then a_1 S + \cdots + a_n S \subseteq c S. for any scalars a_1, \ldots, a_n, if , a_1, + \cdots + , a_n, \leq 1 then a_1 S + \cdots + a_n S \subseteq S. The smallest convex (respectively, balanced) subset ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Hull
In geometry, the convex hull, convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a Bounded set, bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its projective duality, dual problem of intersecting Half-space (geome ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Balanced Set
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field \mathbb with an absolute value function , \cdot , ) is a set S such that a S \subseteq S for all scalars a satisfying , a, \leq 1. The balanced hull or balanced envelope of a set S is the smallest balanced set containing S. The balanced core of a set S is the largest balanced set contained in S. Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set. Definition Let X be a vector space over the field \mathbb of real or complex numbers. Notation If S is a set, a is a scalar, and B \subseteq \mathbb then let a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |