HOME



picture info

Filters In Topology
In topology, filters can be used to study topological spaces and define basic topological notions such as convergence (topology), convergence, Continuous map (topology), continuity, Compact space, compactness, and more. Filter (set theory), Filters, which are special Family of sets, families of subsets of some given set, also provide a common framework for defining various types of Limit of a function, limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called have many useful technical properties and they may often be used in place of arbitrary filters. Filters have generalizations called (also known as ) and , all of which appear naturally and repeatedly throughout topology. Examples include Neighbourhood system, neighborhood filters/Neighborhood base, bases/subbases and Uniform space, uniformities. Every filter is a prefilter and both are filter subbases. Every prefilter and filter subbase is con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Filter Vs Ultrafilter
Filtration is a physical process that separates solid matter and fluid from a mixture. Filter, filtering, filters or filtration may also refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component that performs some operation on a multimedia stream * Information filtering system ** Email filtering, the processing of email to organize it according to specified criteria * Content-control software also known as an Internet filter * Wordfilter, a script typically used on Internet forums or chat rooms * Berkeley Packet Filter, filter expression used in the qualification of network data * DSL filter, a low-pass filter installed between analog devices and a telephone line * Helicon Filter, a raster graphics editor * Filter (large eddy simulation), a mathematical operation intended to remove a range of small scales from the solution to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henri Cartan
Henri Paul Cartan (; 8 July 1904 – 13 August 2008) was a French mathematician who made substantial contributions to algebraic topology. He was the son of the mathematician Élie Cartan, nephew of mathematician Anna Cartan, oldest brother of composer , physicist and mathematician , and the son-in-law of physicist Pierre Weiss. Life According to his own words, Henri Cartan was interested in mathematics at a very young age, without being influenced by his family. He moved to Paris with his family after his father's appointment at Sorbonne in 1909 and he attended secondary school at Lycée Hoche in Versailles. available also at In 1923 he started studying mathematics at École Normale Supérieure, receiving an agrégation in 1926 and a doctorate in 1928. His PhD thesis, entitled ''Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications'', was supervised by Paul Montel. Cartan taught at Lycée Malherbe in Caen from 1928 to 1929, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subnets
A subnet, or subnetwork, is a logical subdivision of an IP network. Updated by RFC 6918. The practice of dividing a network into two or more networks is called subnetting. Computers that belong to the same subnet are addressed with an identical group of its most-significant bits of their IP addresses. This results in the logical division of an IP address into two fields: the ''network number'' or ''routing prefix'', and the ''rest field'' or ''host identifier''. The ''rest field'' is an identifier for a specific host or network interface. The ''routing prefix'' may be expressed as the first address of a network, written in Classless Inter-Domain Routing (CIDR) notation, followed by a slash character (''/''), and ending with the bit-length of the prefix. For example, is the prefix of the Internet Protocol version 4 network starting at the given address, having 24 bits allocated for the network prefix, and the remaining 8 bits reserved for host addressing. Addresses in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Willard-subnet
In topology and related areas of mathematics, a subnet is a generalization of the concept of subsequence to the case of nets. The analogue of "subsequence" for nets is the notion of a "subnet". The definition is not completely straightforward, but is designed to allow as many theorems about subsequences to generalize to nets as possible. There are three non-equivalent definitions of "subnet". The first definition of a subnet was introduced by John L. Kelley in 1955 and later, Stephen Willard introduced his own (non-equivalent) variant of Kelley's definition in 1970. Subnets in the sense of Willard and subnets in the sense of Kelley are the most commonly used definitions of "subnet" but they are each equivalent to the concept of "subordinate filter", which is the analog of "subsequence" for filters (they are not equivalent in the sense that there exist subordinate filters on X = \N whose filter/subordinate–filter relationship cannot be described in terms of the correspond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neighborhood Characterization Of Topological Spaces
In the mathematical field of topology, a topological space is usually defined by declaring its open sets. However, this is not necessary, as there are many equivalent axiomatic foundations, each leading to exactly the same concept. For instance, a topological space determines a class of closed sets, of closure and interior operators, and of convergence of various types of objects. Each of these can instead be taken as the primary class of objects, with all of the others (including the class of open sets) directly determined from that new starting point. For example, in Kazimierz Kuratowski's well-known textbook on point-set topology, a topological space is defined as a set together with a certain type of "closure operator," and all other concepts are derived therefrom. Likewise, the neighborhood-based axioms (in the context of Hausdorff spaces) can be retraced to Felix Hausdorff's original definition of a topological space in Grundzüge der Mengenlehre. Many different textbooks use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Topological Spaces
In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the category of compactly generated weak Hausdorff spaces. As a concrete category Like many categories, the category Top is a concrete category, meaning its objects are sets with additional structure (i.e. topologies) and its morphisms are functions preserving this structure. There is a natural forgetful functor to the category of sets which assigns to each topological space the underlyin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Directed Set
In mathematics, a directed set (or a directed preorder or a filtered set) is a preordered set in which every finite subset has an upper bound. In other words, it is a non-empty preordered set A such that for any a and b in A there exists c in A with a \leq c and b \leq c. A directed set's preorder is called a direction. The notion defined above is sometimes called an . A is defined symmetrically, meaning that every finite subset has a lower bound. Some authors (and this article) assume that a directed set is directed upward, unless otherwise stated. Other authors call a set directed if and only if it is directed both upward and downward. Directed sets are a generalization of nonempty totally ordered sets. That is, all totally ordered sets are directed sets (contrast Partially ordered sets, ordered sets, which need not be directed). Join-semilattices (which are partially ordered sets) are directed sets as well, but not conversely. Likewise, Lattice (order), lattices are directed s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]