HOME





Pivot Position
The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this element is called pivoting. Pivoting may be followed by an interchange of rows or columns to bring the pivot to a fixed position and allow the algorithm to proceed successfully, and possibly to reduce round-off error. It is often used for verifying row echelon form. Pivoting might be thought of as swapping or sorting rows or columns in a matrix, and thus it can be represented as multiplication by permutation matrices. However, algorithms rarely move the matrix elements because this would cost too much time; instead, they just keep track of the permutations. Overall, pivoting adds more operations to the computational cost of an algorithm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quicksort
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. Quicksort is a divide-and-conquer algorithm. It works by selecting a "pivot" element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. For this reason, it is sometimes called partition-exchange sort. The sub-arrays are then sorted recursively. This can be done in-place, requiring small additional amounts of memory to perform the sorting. Quicksort is a comparison sort, meaning that it can sort items of any type for which a "less-than" relation (formally, a total order) is defined. It is a comparison-based sort since elements ''a'' and ''b'' are only swapped in ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (: matrices) is a rectangle, rectangular array or table of numbers, symbol (formal), symbols, or expression (mathematics), expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a " matrix", or a matrix of dimension . Matrices are commonly used in linear algebra, where they represent linear maps. In geometry, matrices are widely used for specifying and representing geometric transformations (for example rotation (mathematics), rotations) and coordinate changes. In numerical analysis, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Array Data Structure
In computer science, an array is a data structure consisting of a collection of ''elements'' (value (computer science), values or variable (programming), variables), of same memory size, each identified by at least one ''array index'' or ''key'', a collection of which may be a tuple, known as an index tuple. An array is stored such that the position (memory address) of each element can be computed from its index tuple by a mathematical formula. The simplest type of data structure is a linear array, also called a one-dimensional array. For example, an array of ten 32-bit (4-byte) integer variables, with indices 0 through 9, may be stored as ten Word (data type), words at memory addresses 2000, 2004, 2008, ..., 2036, (in hexadecimal: 0x7D0, 0x7D4, 0x7D8, ..., 0x7F4) so that the element with index ''i'' has the address 2000 + (''i'' × 4). The memory address of the first element of an array is called first address, foundation address, or base address. Because the mathematical conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855). To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: * Swapping two rows, * Multiplying a row by a nonzero number, * Adding a multiple of one row to another row. Using these operations, a matrix can always be transformed into an upper triangular matrix (possibly bordered by rows or columns of zeros), and in fact one that is in row echelon form. Once all of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplex Algorithm
In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are not actually used in the method, but one interpretation of it is that it operates on simplicial ''cones'', and these become proper simplices with an additional constraint. The simplicial cones in question are the corners (i.e., the neighborhoods of the vertices) of a geometric object called a polytope. The shape of this polytope is defined by the constraints applied to the objective function. History George Dantzig worked on planning methods for the US Army Air Force during World War II using a desk calculator. During 1946, his colleague challenged him to mechanize the planning process to distract him from taking another job. Dantzig formulated the problem as linear inequalities inspired by the work of Wassily Leontief, however, at tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Row Echelon Form
In linear algebra, a matrix is in row echelon form if it can be obtained as the result of Gaussian elimination. Every matrix can be put in row echelon form by applying a sequence of elementary row operations. The term ''echelon'' comes from the French ''échelon'' ("level" or step of a ladder), and refers to the fact that the nonzero entries of a matrix in row echelon form look like an inverted staircase. For square matrices, an upper triangular matrix with nonzero entries on the diagonal is in row echelon form, and a matrix in row echelon form is (weakly) upper triangular. Thus, the row echelon form can be viewed as a generalization of upper triangular form for rectangular matrices. A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to 1 and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix Multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices and is denoted as . Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, to represent the composition of functions, composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. Computing matrix products is a central operation in all computational applications of linear algebra. Not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Matrix
In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permutation of elements. Pre- multiplying an -row matrix by a permutation matrix , forming , results in permuting the rows of , while post-multiplying an -column matrix , forming , permutes the columns of . Every permutation matrix ''P'' is orthogonal, with its inverse equal to its transpose: P^=P^\mathsf. Indeed, permutation matrices can be characterized as the orthogonal matrices whose entries are all non-negative. The two permutation/matrix correspondences There are two natural one-to-one correspondences between permutations and permutation matrices, one of which works along the rows of the matrix, the other along its columns. Here is an example, starting with a permutation in two-line form at the upper left: :\begin \pi\colon\begin1&2&3&4\\3&2&4&1\e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Stability
In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context: one important context is numerical linear algebra, and another is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues. On the other hand, in numerical algorithms for differential equations the concern is the growth of round-off errors and/or small fluctuations in initial data which might cause a large deviation of final answer from the exact solution. Some numerical algorithms may damp out the small fluctuations (errors) in the input data; others might magnify such errors. Calculations that can be proven not to magnify approximation errors are called ''numerically stable''. One ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Absolute Value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), and For example, the absolute value of 3 and the absolute value of −3 is The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces. The absolute value is closely related to the notions of magnitude, distance, and norm in various mathematical and physical contexts. Terminology and notation In 1806, Jean-Robert Argand introduced the term ''module'', meaning ''unit of measure'' in French, specifically for the ''complex'' absolute value,Oxford English Dictionary, Draft Revision, Ju ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduced Row Echelon Form
In linear algebra, a matrix is in row echelon form if it can be obtained as the result of Gaussian elimination. Every matrix can be put in row echelon form by applying a sequence of elementary row operations. The term ''echelon'' comes from the French ''échelon'' ("level" or step of a ladder), and refers to the fact that the nonzero entries of a matrix in row echelon form look like an inverted staircase. For square matrices, an upper triangular matrix with nonzero entries on the diagonal is in row echelon form, and a matrix in row echelon form is (weakly) upper triangular. Thus, the row echelon form can be viewed as a generalization of upper triangular form for rectangular matrices. A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to 1 and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]