Pitch Class
In music, a pitch class (p.c. or pc) is a set of all pitches that are a whole number of octaves apart; for example, the pitch class C consists of the Cs in all octaves. "The pitch class C stands for all possible Cs, in whatever octave position." Important to musical set theory, a pitch class is "all pitches related to each other by octave, enharmonic equivalence, or both." Thus, using scientific pitch notation, the pitch class "C" is the set : = . Although there is no formal upper or lower limit to this sequence, only a few of these pitches are audible to humans. Pitch class is important because human pitch-perception is periodic: pitches belonging to the same pitch class are perceived as having a similar quality or color, a property called " octave equivalence". Psychologists refer to the quality of a pitch as its "chroma". A ''chroma'' is an attribute of pitches (as opposed to ''tone height''), just like hue is an attribute of color. A ''pitch class'' is a set of all p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Music
Music is the arrangement of sound to create some combination of Musical form, form, harmony, melody, rhythm, or otherwise Musical expression, expressive content. Music is generally agreed to be a cultural universal that is present in all human societies. Definitions of music vary widely in substance and approach. While scholars agree that music is defined by a small number of elements of music, specific elements, there is no consensus as to what these necessary elements are. Music is often characterized as a highly versatile medium for expressing human creativity. Diverse activities are involved in the creation of music, and are often divided into categories of musical composition, composition, musical improvisation, improvisation, and performance. Music may be performed using a wide variety of musical instruments, including the human voice. It can also be composed, sequenced, or otherwise produced to be indirectly played mechanically or electronically, such as via a music box ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pitch Space
In music theory, pitch spaces model relationships between pitches. These models typically use distance to model the degree of relatedness, with closely related pitches placed near one another, and less closely related pitches farther apart. Depending on the complexity of the relationships under consideration, the models may be dimension, multidimensional. Models of pitch space are often Graph (discrete mathematics), graphs, group (mathematics), groups, lattice (music), lattices, or geometrical figures such as helixes. Pitch spaces distinguish octave-related pitches. When octave-related pitches are not distinguished, we have instead pitch class spaces, which represent relationships between pitch classes. (Some of these models are discussed in the entry on modulatory space, though readers should be advised that the term "modulatory space" is not a standard music-theoretical term.) Chordal spaces model relationships between chords. Linear and helical pitch space The simplest pitch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interval (music)
In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord. In Western music, intervals are most commonly differences between notes of a diatonic scale. Intervals between successive notes of a scale are also known as scale steps. The smallest of these intervals is a semitone. Intervals smaller than a semitone are called microtones. They can be formed using the notes of various kinds of non-diatonic scales. Some of the very smallest ones are called commas, and describe small discrepancies, observed in some tuning systems, between enharmonically equivalent notes such as C and D. Intervals can be arbitrarily small, and even imperceptible to the human ear. In physical terms, an interval is the ratio between two sonic fr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Post-tonal
Atonality in its broadest sense is music that lacks a tonal center, or key. ''Atonality'', in this sense, usually describes compositions written from about the early 20th-century to the present day, where a hierarchy of harmonies focusing on a single, central triad is not used, and the notes of the chromatic scale function independently of one another. More narrowly, the term ''atonality'' describes music that does not conform to the system of tonal hierarchies that characterized European classical music between the seventeenth and nineteenth centuries. "The repertory of atonal music is characterized by the occurrence of pitches in novel combinations, as well as by the occurrence of familiar pitch combinations in unfamiliar environments". The term is also occasionally used to describe music that is neither tonal nor serial, especially the pre-twelve-tone music of the Second Viennese School, principally Alban Berg, Arnold Schoenberg, and Anton Webern. However, "as a categori ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Duodecimal
The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base. In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten. In duodecimal, "100" means twelve squared (144), "1,000" means twelve cubed (1,728), and "0.1" means a twelfth (0.08333...). Various symbols have been used to stand for ten and eleven in duodecimal notation; this page uses and , as in hexadecimal, which make a duodecimal count from zero to twelve read 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, , , and finally 10. The Dozenal Societies of America and Great Britain (organisations promoting the use of duodecimal) use turned digits in their published material: (a turned 2) for ten (dek, pronounced dɛk) and (a turned 3) for eleven (el, pronounced ɛl). The number twelve, a superior highly composite number, is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interval Class
In musical set theory, an interval class (often abbreviated: ic), also known as unordered pitch-class interval, interval distance, undirected interval, or "(even completely incorrectly) as 'interval mod 6'" (; ), is the shortest distance in pitch class space between two unordered pitch classes. For example, the interval class between pitch classes 4 and 9 is 5 because 9 − 4 = 5 is less than 4 − 9 = −5 ≡ 7 (mod 12). See modular arithmetic for more on modulo 12. The largest interval class is 6 since any greater interval ''n'' may be reduced to 12 − ''n''. Use of interval classes The concept of interval class accounts for octave, enharmonic, and inversional equivalency. Consider, for instance, the following passage: (To hear a MIDI realization, click the following: In the example above, all four labeled pitch-pairs, or dyads, share a common "intervallic color." In atonal Atonality in i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
12 Equal Temperament
12 equal temperament (12-ET) is the musical system that divides the octave into 12 parts, all of which are Equal temperament, equally tempered (equally spaced) on a logarithmic scale, with a ratio equal to the Twelfth root of two, 12th root of 2 (\sqrt[12] ≈ 1.05946). That resulting smallest interval, the width of an octave, is called a semitone or half step. Twelve-tone equal temperament is the most widespread system in music today. It has been the predominant tuning system of Western music, starting with classical music, since the 18th century, and Europe almost exclusively used approximations of it for millennia before that. It has also been used in other cultures. In modern times, 12-ET is usually tuned relative to a standard pitch of 440 Hz, called A440 (pitch standard), A440, meaning one note, A (musical note), A4 (the A in the 4th octave of a typical 88-key piano), is tuned to 440 hertz and all other notes are defined as some multiple of semitones apart from it, ei ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quarter Tone
A quarter tone is a pitch halfway between the usual notes of a chromatic scale or an interval about half as wide (orally, or logarithmically) as a semitone, which itself is half a whole tone. Quarter tones divide the octave by 50 cents each, and have 24 different pitches. Quarter tones have their roots in the music of the Middle East and more specifically in Persian traditional music. However, the first evidenced proposal of the equally-tempered quarter tone scale, or 24 equal temperament, was made by 19th-century music theorists Heinrich Richter in 1823 Julian Rushton, "Quarter-Tone", ''The New Grove Dictionary of Music and Musicians'', second edition, edited by Stanley Sadie and John Tyrrell (London: Macmillan, 2001). and Mikhail Mishaqa about 1840. Composers who have written music using this scale include: Pierre Boulez, Julián Carrillo, Mildred Couper, George Enescu, Alberto Ginastera, Gérard Grisey, Alois Hába, Ljubica Marić, Charles Ives, Tristan Murail, Kr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pitch Class Space
In music theory, pitch-class space is the circular space representing all the Musical note, notes (pitch classes) in a musical octave. In this space, there is no distinction between tones separated by an integral number of octaves. For example, C4, C5, and C6, though different pitches, are represented by the same point in pitch class space. Since pitch-class space is a circle, we return to our starting point by taking a series of steps in the same direction: beginning with C, we can move "upward" in pitch-class space, through the pitch classes C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, and B, returning finally to C. By contrast, pitch space is a linear space: the more steps we take in a single direction, the further we get from our starting point. Tonal pitch-class space , and Generative theory of tonal music, Lerdahl and Jackendoff (1983) use a "reductional format" to represent the perception of pitch-class relations in tonal contexts. These two-dimensional models resemble bar g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quotient Group
A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For example, the cyclic group of addition modulo ''n'' can be obtained from the group of integers under addition by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. It is part of the mathematical field known as group theory. For a congruence relation on a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are precisely the cosets of that normal subgroup. The resulting quotient is written , where G is the original group and N is the normal subgroup. This is read as '', where \text is short for modulo. (The notation should be interpreted w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |