HOME





Parallel Computation Thesis
In computational complexity theory, the parallel computation thesis is a hypothesis which states that the ''time'' used by a (reasonable) parallel machine is polynomially related to the ''space'' used by a sequential machine. The parallel computation thesis was set forth by Ashok K. Chandra, Chandra and Larry Stockmeyer, Stockmeyer in 1976. In other words, for a computational model which allows computations to branch and run in parallel without bound, a formal language which is decidable language, decidable under the model using no more than t(n) steps for inputs of length ''n'' is decidable by a non-branching machine using no more than t(n)^k units of storage for some constant ''k''. Similarly, if a machine in the unbranching model decides a language using no more than s(n) storage, a machine in the parallel model can decide the language in no more than s(n)^k steps for some constant ''k''. The parallel computation thesis is not a rigorous formal statement, as it does not clearl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and explores the relationships between these classifications. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of logic gate, gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternating Turing Machine
In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981. Definitions Informal description The definition of NP uses the ''existential mode'' of computation: if ''any'' choice leads to an accepting state, then the whole computation accepts. The definition of co-NP uses the ''universal mode'' of computation: only if ''all'' choices lead to an accepting state does the whole computation accept. An alternating Turing machine (or to be more precise, the definition of acceptance for such a machine) alternates between these modes. An alternating Turing machine is a non-deterministic Turing machine whose states are divided into two sets: existential state ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Church–Turing Thesis
In Computability theory (computation), computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a wiktionary:thesis, thesis about the nature of computable functions. It states that a function (mathematics), function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term ''effectively calculable'' to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formal system, formalize the notion of computability: * In 1933, Kurt Gödel, with Jacques Herbrand, formalized the definition of the class of general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NC (complexity)
In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size ''n'' is in NC if there exist constants ''c'' and ''k'' such that it can be solved in time using parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.Arora & Barak (2009) p.120 As in the case of circuit complexity theory, usually the class has an extra constraint that the circuit family must be ''uniform'' ( see below). Just as the class P can be thought of as the tractable problems ( Cobham's thesis), so NC can be thought of as the problems that can be efficiently solved on a parallel computer.Arora & Barak (2009) p.118 NC is a subset of P because polylogarithmic parallel computations can be simulated by polynomi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PSPACE-complete
In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (PSPACE, polynomial space) and if every other problem that can be solved in polynomial space can be Polynomial-time reduction, transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE. Problems known to be PSPACE-complete include determining properties of regular expressions and context-sensitive grammars, determining the truth of quantified Boolean formula problem, quantified Boolean formulas, step-by-step changes between solutions of combinatorial optimization problems, and many puzzles and games. Theory A problem is defined to be PSPACE-complete if it can be solved using a polynomial amount o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PolyL
In computational complexity theory, polyL is the complexity class of decision problems that can be solved on a deterministic Turing machine by an algorithm whose space complexity is bounded by a polylogarithmic function in the size of the input. In other words, polyL = DSPACE((log ''n'')O(1)), where ''n'' denotes the input size, and O(1) denotes a constant. Just as L ⊆ P, polyL ⊆ QP. However, the only proven relationship between polyL and P is that polyL ≠ P; it is unknown if polyL ⊊ P, if P ⊊ polyL, or if neither is contained in the other. The same is true for polyL vs NP. One proof that polyL ≠ P is that P has a complete problem under logarithmic space many-one reductions but polyL does not due to the space hierarchy theorem. The space hierarchy theorem guarantees that DSPACE(logd ''n'') ⊊ DSPACE(logd + 1 ''n'') for all integers d > 0. If polyL had a complete problem, call it ''A'', it would be an element of DSPACE(logk ''n'') for some integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The ACM
The ''Journal of the ACM'' (''JACM'') is a peer-reviewed scientific journal covering computer science in general, especially theoretical aspects. It is an official journal of the Association for Computing Machinery. Its current editor-in-chief is Venkatesan Guruswami. The journal was established in 1954 and "computer scientists universally hold the ''Journal of the ACM'' in high esteem". See also * ''Communications of the ACM ''Communications of the ACM'' (''CACM'') is the monthly journal of the Association for Computing Machinery (ACM). History It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are i ...'' References External links * {{DEFAULTSORT:Journal Of The Acm Academic journals established in 1954 Computer science journals Association for Computing Machinery academic journals Bimonthly journals English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a member of a #Related asymptotic notations, family of notations invented by German mathematicians Paul Gustav Heinrich Bachmann, Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for '':wikt:Ordnung#German, Ordnung'', meaning the order of approximation. In computer science, big O notation is used to Computational complexity theory, classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetic function, arithmetical function and a better understood approximation; one well-known exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-deterministic Turing Machine
In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is ''not'' completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine. NTMs are sometimes used in thought experiments to examine the abilities and limits of computers. One of the most important open problems in theoretical computer science is the P versus NP problem, which (among other equivalent formulations) concerns the question of how difficult it is to simulate nondeterministic computation with a deterministic computer. Background In essence, a Turing machine is imagined to be a simple computer that reads and writes symbols one at a time on an endless tape by strictly following a set of rules. It determines what action it should perform next according to its internal ''state'' and ''what symbol it cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypothesis
A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or thought. If a hypothesis is repeatedly independently demonstrated by experiment to be true, it becomes a scientific theory. In colloquial usage, the words "hypothesis" and "theory" are often used interchangeably, but this is incorrect in the context of science. A working hypothesis is a provisionally-accepted hypothesis used for the purpose of pursuing further progress in research. Working hypotheses are frequently discarded, and often proposed with knowledge (and warning) that they are incomplete and thus false, with the intent of moving research in at least somewhat the right direction, especially when scientists are stuck on an issue and brainstorming ideas. A different meaning of the term ''hypothesis'' is used in formal l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turing Machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete mathematics, discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the Alphabet (formal languages), alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write, which direction to move the head, and whet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Decidable Language
In mathematics, logic and computer science, a recursive (or ''decidable'') language is a recursive subset of the Kleene closure of an alphabet. Equivalently, a formal language is recursive if there exists a Turing machine that decides the formal language. In theoretical computer science, such always-halting Turing machines are called total Turing machines or algorithms. The concept of decidability may be extended to other models of computation. For example, one may speak of languages decidable on a non-deterministic Turing machine. Therefore, whenever an ambiguity is possible, the synonym used for "recursive language" is Turing-decidable language, rather than simply ''decidable''. The class of all recursive languages is often called R, although this name is also used for the class RP. This type of language was not defined in the Chomsky hierarchy. All recursive languages are also recursively enumerable. All regular, context-free and context-sensitive languages are recu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]