HOME





Parabolic Hausdorff Dimension
In fractal geometry, the parabolic Hausdorff dimension is a restricted version of the genuine Hausdorff dimension. Only parabolic cylinders, i. e. rectangles with a distinct non-linear scaling between time and space are permitted as covering sets. It is useful to determine the Hausdorff dimension of self-similar stochastic processes, such as the geometric Brownian motion or stable Lévy processes plus Borel measurable drift function f. Definitions We define the \alpha-parabolic \beta-Hausdorff outer measure for any set A \subseteq \R^ as : \mathcal^\alpha-\mathcal^\beta (A) := \lim_ \inf \left \. where the \alpha-parabolic cylinders \left ( P_k \right )_ are contained in : \mathcal^\alpha := \left \. We define the \alpha-parabolic Hausdorff dimension of A as :\mathcal^\alpha-\dim A := \inf \left \. The case \alpha = 1 equals the genuine Hausdorff dimension \dim. Application Let \varphi_\alpha := \mathcal^\alpha-\dim \mathcal_T(f). We can calculate the Hausdorff dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractal Geometry
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they scale. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). Likewise, if the radius of a filled sph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Dimension
In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of scaling and self-similarity, one is led to the conclusion that particular objects—including fractals—have non-integer Hausdorff dimensions. Because of the significant technical advances made by Abram Samoilovitch Besicovitch allowing computation of di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Processes
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Brownian Motion
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model. Technical definition: the SDE A stochastic process ''S''''t'' is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): : dS_t = \mu S_t\,dt + \sigma S_t\,dW_t where W_t is a Wiener process or Brownian motion, and \mu ('the percentage drift') and \sigma ('the percentage volatility') are constants. The former parameter is used to model deterministic trends, while the latter parameter models unpredictable events occurring during the motion. Solving the SDE For an arbitrary initial value ''S' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lévy Processes
Levy, Lévy or Levies may refer to: People * Levy (surname), people with the surname Levy or Lévy * Levy Adcock (born 1988), American football player * Levy Barent Cohen (1747–1808), Dutch-born British financier and community worker * Levy Fidelix (1951–2021), Brazilian conservative politician, businessman and journalist * Levy Gerzberg (born 1945), Israeli-American entrepreneur, inventor, and business person * Levy Li (born 1987), Miss Malaysia Universe 2008–2009 * Levy Mashiane (born 1996), South African footballer * Levy Matebo Omari (born 1989), Kenyan long-distance runner * Levy Mayer (1858–1922), American lawyer * Levy Middlebrooks (born 1966), American basketball player * Levy Mokgothu, South African footballer * Levy Mwanawasa (1948–2008), President of Zambia from 2002 * Levy Nzoungou (born 1998), Congolese-French rugby player, playing in England * Levy Rozman (born 1995), American chess IM, coach, and content creator * Levy Sekgapane (born 1990), S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Measurable
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Formal definition Let X be a locally compact Hausdorff space, and let \mathfrak(X) be the smallest σ-algebra that contains the open sets of X; this is known as the σ-algebra of Borel sets. A Borel measure is any measure \mu defined on the σ-algebra of Borel sets. A few authors require in addition that \mu is locally finite, meaning that every point has an open neighborhood with finite measure. For Hausdorff spaces, this implies that \mu(C)<\infty for every C; and for locally compact Hausdorff spaces, the two conditions are equivalent. If a Borel measure \mu is both

Outer Measure
In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory (outer measures are for example used in the proof of the fundamental Carathéodory's extension theorem), and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension. Outer measures are commonly used in the field of geometric measure theory. Measures are generalizations of length, area and volume, but are useful for much more abstract and irregular sets than intervals in \mathbb or balls in \mathbb^. One might expect to define a gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hölder Continuous
Hölder: * ''Hölder, Hoelder'' as surname * Hölder condition * Hölder's inequality In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality (mathematics), inequality between Lebesgue integration, integrals and an indispensable tool for the study of Lp space, spaces. The numbers an ... * Hölder mean * Jordan–Hölder theorem {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Theory And Related Fields
'' Probability Theory and Related Fields'' is a peer-reviewed mathematics journal published by Springer. Established in 1962, it was originally named ''Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete'', with the English replacing the German starting from volume 71 (1986). The journal publishes articles on probability. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2019 MCQ was 2.29, and its 2019 impact factor was 2.125. The current editors-in-chief are Fabio Toninelli (Technical University of Vienna) and Bálint Tóth (University of Bristol and Alfréd Rényi Institute of Mathematics). The journal CiteScore is 3.8 and its SCImago Journal Rank is 3.198, both from 2020. It is currently ranked 11th in the field of Probability & Statistics with Applications according to Google Scholar Google Scholar is a freely accessible web search engine that indexes the full text or metadata of Academic publishing, scholarly literature across a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Proceedings Of The Cambridge Philosophical Society
''Mathematical Proceedings of the Cambridge Philosophical Society'' is a mathematical journal published by Cambridge University Press for the Cambridge Philosophical Society. It aims to publish original research papers from a wide range of pure and applied mathematics. The journal, titled ''Proceedings of the Cambridge Philosophical Society'' before 1975, has been published since 1843. Abstracting and indexing The journal is abstracted and indexed in *MathSciNet *Science Citation Index Expanded *Scopus *ZbMATH Open See also *Cambridge Philosophical Society The Cambridge Philosophical Society (CPS) is a scientific society at the University of Cambridge. It was founded in 1819. The name derives from the medieval use of the word philosophy to denote any research undertaken outside the fields of law ... External linksofficial website References Academic journals associated with learned and professional societies Cambridge University Press academic journals Mathematics e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimension Theory
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was foun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractals
In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine geometry, affine self-similar. Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they Scaling (geometry), scale. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]