Parabolic Hausdorff Dimension
   HOME

TheInfoList



OR:

In fractal geometry, the parabolic Hausdorff dimension is a restricted version of the genuine
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line ...
. Only parabolic cylinders, i. e. rectangles with a distinct non-linear scaling between time and space are permitted as covering sets. It is useful to determine the Hausdorff dimension of self-similar
stochastic processes In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stoc ...
, such as the
geometric Brownian motion A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It ...
or stable Lévy processes plus Borel measurable drift function f.


Definitions

We define the \alpha-parabolic \beta-Hausdorff
outer measure In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer me ...
for any set A \subseteq \R^ as : \mathcal^\alpha-\mathcal^\beta (A) := \lim_ \inf \left \. where the \alpha-parabolic cylinders \left ( P_k \right )_ are contained in : \mathcal^\alpha := \left \. We define the \alpha-parabolic Hausdorff dimension of A as :\mathcal^\alpha-\dim A := \inf \left \. The case \alpha = 1 equals the genuine Hausdorff dimension \dim.


Application

Let \varphi_\alpha := \mathcal^\alpha-\dim \mathcal_T(f). We can calculate the Hausdorff dimension of the fractional Brownian motion B^H of Hurst index 1/\alpha = H \in (0,1] plus some measurable drift function f. We get : \dim \mathcal_T \left (B^H+f \right ) = \varphi_\alpha \wedge \frac \cdot \varphi_ + \left (1 - \frac \right) \cdot d and : \dim \mathcal_T \left (B^H +f \right ) = \varphi_\alpha \wedge d. For an isotropic \alpha-stable Lévy process X for \alpha \in (0,2] plus some measurable drift function f we get : \dim \mathcal_T(X+f) = \begin \varphi_1, & \alpha \in (0,1], \\ \varphi_\alpha \wedge \frac \cdot \varphi_\alpha + \left ( 1 - \frac \right ) \cdot d, & \alpha \in ,2\end and : \dim \mathcal_T \left ( X + f \right ) = \begin \alpha \cdot \varphi_\alpha \wedge d, & \alpha \in (0,1], \\ \varphi_\alpha \wedge d, & \alpha \in ,2 \end


Inequalities and identities

For \phi_\alpha := \mathcal^\alpha-\dim A one has : \dim A \leq \begin \phi_\alpha \wedge \alpha \cdot \phi_\alpha + 1 - \alpha, & \alpha \in (0,1], \\ \phi_\alpha \wedge \frac \cdot \alpha + \left ( 1 - \frac \right ) \cdot d, & \alpha \in ,\infty) \end and : \dim A \geq \begin \alpha \cdot \phi_\alpha \vee \phi_\alpha + \left ( 1 - \frac \right ) \cdot d, & \alpha \in (0,1 \\ \phi_\alpha + 1 - \alpha, & \alpha \in ,\infty). \end Further, for the fractional Brownian motion B^H of Hurst index 1/\alpha = H \in (0,1/math> one has : \mathcal^\alpha-\dim \mathcal_T \left (B^H \right ) = \alpha \cdot \dim T and for an isotropic \alpha-stable Lévy process X for \alpha \in (0,2] one has : \mathcal^\alpha-\dim \mathcal_T \left (X \right ) = (\alpha \vee 1) \cdot \dim T and : \dim \mathcal_T(X) = \alpha \cdot \dim T \wedge d. For constant functions f_C we get : \mathcal^\alpha-\dim \mathcal_T \left (f_C \right ) = (\alpha \vee 1) \cdot \dim T. If f \in C^\beta(T,\mathbb^d) , i. e. f is \beta-
Hölder continuous Hölder: * ''Hölder, Hoelder'' as surname * Hölder condition * Hölder's inequality In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality (mathematics), inequality between Lebesgue integration, in ...
, for \varphi_\alpha = \mathcal^\alpha-\dim \mathcal_T(f) the estimates : \varphi_\alpha \leq \begin \dim T + \left ( \frac - \beta \right ) \cdot d \wedge \frac \wedge d + 1, & \alpha \in (0,1], \\ \alpha \cdot \dim T + (1 - \alpha \cdot \beta) \cdot d \wedge \frac \wedge d + 1, & \alpha \in \left ,\frac \right \\ \alpha \cdot \dim T + \frac(\dim T -1) + \alpha \wedge d + 1, & \alpha \in \left frac, \infty) \right \end hold. Finally, for the Brownian motion B and f \in C^\beta \left (T,\mathbb^d \right ) we get : \dim \mathcal_T(B + f) \leq \begin d + \frac, & \beta \leq \frac - \frac,\\ \dim T + (1 - \beta) \cdot d, & \frac - \frac \leq \beta \leq \frac \wedge \frac,\\ \frac, & \frac \leq \beta \leq \frac,\\ 2 \cdot \dim T \wedge \dim T + \frac, & \text \end and : \dim \mathcal_T(B + f) \leq \begin \frac, & \frac \leq \beta \leq \frac,\\ 2 \cdot \dim T \wedge d, & \frac \leq \frac \leq \beta,\\ d, & \text. \end


References


Sources

* * *{{cite journal , last1=Taylor , first1=S. J. , last2=Watson , first2=N. A. , date=1985 , title=A Hausdorff measure classification of polar sets for the heat equation , journal=
Mathematical Proceedings of the Cambridge Philosophical Society ''Mathematical Proceedings of the Cambridge Philosophical Society'' is a mathematical journal published by Cambridge University Press for the Cambridge Philosophical Society. It aims to publish original research papers from a wide range of pure ...
, volume=97 , issue=2 , pages=325–344 , doi=10.1017/S0305004100062873 Dimension theory Fractals Metric geometry