PL Homeomorphism
In mathematics, a piecewise linear manifold (PL manifold) is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation. An isomorphism of PL manifolds is called a PL homeomorphism. Relation to other categories of manifolds PL, or more precisely PDIFF, sits between DIFF (the category of smooth manifolds) and TOP (the category of topological manifolds): it is categorically "better behaved" than DIFF — for example, the Generalized Poincaré conjecture is true in PL (with the possible exception of dimension 4, where it is equivalent to DIFF), but is false generally in DIFF — but is "worse behaved" than TOP, as elaborated in surgery theory. Smooth manifolds Smooth manifolds have canonical PL structures — they are uniquely ''triangulizable,'' by Whitehead's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
H-cobordism
In geometric topology and differential topology, an (''n'' + 1)-dimensional cobordism ''W'' between ''n''-dimensional manifolds ''M'' and ''N'' is an ''h''-cobordism (the ''h'' stands for homotopy equivalence) if the inclusion maps : M \hookrightarrow W \quad\mbox\quad N \hookrightarrow W are homotopy equivalences. The ''h''-cobordism theorem gives sufficient conditions for an ''h''-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder ''M'' × , 1 Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds. The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the generalized Poincaré conjecture. Background Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplicial Manifold
In physics, the term simplicial manifold commonly refers to one of several loosely defined objects, commonly appearing in the study of Regge calculus. These objects combine attributes of a simplex with those of a manifold. There is no standard usage of this term in mathematics, and so the concept can refer to a triangulation in topology, or a piecewise linear manifold, or one of several different functors from either the category of sets or the category of simplicial sets to the category of manifolds. A manifold made out of simplices A simplicial manifold is a simplicial complex for which the geometric realization is homeomorphic to a topological manifold. This is essentially the concept of a triangulation in topology. This can mean simply that a neighborhood of each vertex (i.e. the set of simplices that contain that point as a vertex) is homeomorphic to a ''n''-dimensional ball. A simplicial object built from manifolds A simplicial manifold is also a simplicial object ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Topology
Digital topology deals with properties and features of two-dimensional (2D) or three-dimensional (3D) digital images that correspond to topological properties (e.g., connectedness) or topological features (e.g., boundaries) of objects. Concepts and results of digital topology are used to specify and justify important (low-level) image analysis algorithms, including algorithms for thinning, border or surface tracing, counting of components or tunnels, or region-filling. History Digital topology was first studied in the late 1960s by the computer image analysis researcher Azriel Rosenfeld (1931–2004), whose publications on the subject played a major role in establishing and developing the field. The term "digital topology" was itself invented by Rosenfeld, who used it in a 1973 publication for the first time. A related work called the grid cell topology, which could be considered as a link to classic combinatorial topology, appeared in the book of Pavel Alexandrov and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Manifold
In mathematics, a digital manifold is a special kind of combinatorial manifold which is defined in digital space i.e. grid cell space. A combinatorial manifold is a kind of manifold which is a discretization of a manifold. It usually means a piecewise linear manifold made by simplicial complexes. Concepts Parallel-move is used to extend an i-cell to (i+1)-cell. In other words, if A and B are two i-cells and A is a parallel-move of B, then is an (i+1)-cell. Therefore, k-cells can be defined recursively. Basically, a connected set of grid points M can be viewed as a digital k-manifold if: (1) any two k-cells are (k-1)-connected, (2) every (k-1)-cell has only one or two parallel-moves, and (3) M does not contain any (k+1)-cells. See also *Digital geometry * Digital topology * Topological data analysis *Topology *Discrete mathematics Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplicial Complexes
In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their ''n''-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex., Section 4.3 Definitions A simplicial complex \mathcal is a set of simplices that satisfies the following conditions: # Every face of a simplex from \mathcal is also in \mathcal. # The non-empty intersection of any two simplices \sigma_1, \sigma_2 \in \mathcal is a face of both \sigma_1 and \sigma_2. See also the definition of an abstract ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Combinatorial Manifold
Digital topology deals with properties and features of two-dimensional (2D) or three-dimensional (3D) digital images that correspond to topological properties (e.g., connectedness) or topological features (e.g., boundaries) of objects. Concepts and results of digital topology are used to specify and justify important (low-level) image analysis algorithms, including algorithms for thinning, border or surface tracing, counting of components or tunnels, or region-filling. History Digital topology was first studied in the late 1960s by the computer image analysis researcher Azriel Rosenfeld (1931–2004), whose publications on the subject played a major role in establishing and developing the field. The term "digital topology" was itself invented by Rosenfeld, who used it in a 1973 publication for the first time. A related work called the grid cell topology, which could be considered as a link to classic combinatorial topology, appeared in the book of Pavel Alexandrov and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Algebraic Set
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.e., mappings whose graphs are semialgebraic sets. Terminology Nowadays the words 'semialgebraic geometry' and 'real algebraic geometry' are used as synonyms, because real algebraic sets cannot be studied seriously without the use of semialgebraic sets. For example, a projection of a real algebraic set along a coordinate axis need not be a real algebraic set, but it is always a semialgebraic set: this is the Tarski–Seidenberg theorem. Related fields are o-minimal theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Publications Mathématiques De L'IHÉS
''Publications Mathématiques de l'IHÉS'' is a peer-reviewed mathematical journal. It is published by Springer Science+Business Media on behalf of the Institut des Hautes Études Scientifiques, with the help of the Centre National de la Recherche Scientifique. The journal was established in 1959 and was published at irregular intervals, from one to five volumes a year. It is now biannual. The editor-in-chief is Sébastien Boucksom (CNRS, Institut de Mathématique de Jussieu). See also *''Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as t ...'' *'' Journal of the American Mathematical Society'' *'' Inventiones Mathematicae'' External links * Back issues from 1959 to 2010 Mathematics journals Academic journals established in 1959 Springer Science+Business Me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Obstruction Theory
Obstruction may refer to: Places * Obstruction Island, in Washington state * Obstruction Islands, east of New Guinea Medicine * Obstructive jaundice * Obstructive sleep apnea * Airway obstruction, a respiratory problem ** Recurrent airway obstruction * Bowel obstruction, a blockage of the intestines. * Gastric outlet obstruction * Distal intestinal obstruction syndrome * Congenital lacrimal duct obstruction * Bladder outlet obstruction Politics and law * Obstruction of justice, the crime of interfering with law enforcement * Obstructionism, the practice of deliberately delaying or preventing a process or change, especially in politics * Emergency Workers (Obstruction) Act 2006 Science and mathematics * Obstruction set in forbidden graph characterizations, in the study of graph minors in graph theory * Obstruction theory, in mathematics * Propagation path obstruction ** Single Vegetative Obstruction Model Sports * Obstruction (baseball), when a fielder illegally hinders a baser ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |