HOME





PBR322
pBR322 is a plasmid and was one of the first widely used ''E. coli'' cloning vectors. Created in 1977 in the laboratory of Herbert Boyer at the University of California, San Francisco, it was named after Francisco Bolivar Zapata, the postdoctoral researcher and Raymond L. Rodriguez. The p stands for "plasmid," and BR for "Bolivar" and "Rodriguez." pBR322 is 4361 base pairs in length and has two antibiotic resistance genes – the gene '' bla'' encoding the ampicillin resistance (AmpR) protein, and the gene ''tetA'' encoding the tetracycline resistance (TetR) protein. It contains the origin of replication of pMB1, and the '' rop'' gene, which encodes a restrictor of plasmid copy number. The plasmid has unique restriction sites for more than forty restriction enzymes. Eleven of these forty sites lie within the TetR gene. There are two sites for restriction enzymes HindIII and ClaI within the promoter of the TetR gene. There are six key restriction sites inside the AmpR gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasmid
A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria and archaea; however plasmids are sometimes present in and eukaryotic organisms as well. Plasmids often carry useful genes, such as those involved in antibiotic resistance, virulence, secondary metabolism and bioremediation. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain additional genes for special circumstances. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet by various vendors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plasmid Copy Number
In cellular biology, the plasmid copy number is the number of copies of a given plasmid in a cell. To ensure survival and thus the continued propagation of the plasmid, they must regulate their copy number. If a plasmid has too high of a copy number, they may excessively burden their host by occupying too much cellular machinery and using too much energy. On the other hand, too low of a copy number may result in the plasmid not being present in all of their host's progeny. Plasmids may be either low, medium or high copy number plasmids; the regulation mechanisms between low and medium copy number plasmids are different. Low copy plasmids (5 or less copies per host) require either a partitioning system or a toxin-antitoxin pair such as CcdA/CcdB to ensure that each daughter receives the plasmid. For example, the F plasmid, which is the origin of BACs ( bacterial artificial chromosomes) is a single copy plasmid with a partitioning system encoded in an operon right next to the plasmi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector (molecular Biology)
In molecular cloning, a vector is any particle (e.g., plasmids, cosmids, Lambda phages) used as a vehicle to artificially carry a foreign nucleic acid sequence, nucleic sequence – usually DNA – into another Cell (biology), cell, where it can DNA replication, be replicated and/or Gene expression, expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and Bacterial artificial chromosome, artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multiple cloning site, multicloning site, and a selectable marker. The vector itself generally carries a DNA sequence that consists of an Insert (molecular biology), insert (in this case the transgene) and a larger sequence that serves as the "backbone" of the vector. The purpose of a vector which transfers genetic information to another cell is typically to isolate, mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PSC101
pSC101 is a DNA plasmid that is used as a cloning vector in genetic cloning experiments. pSC101 was the first cloning vector, used in 1973 by Herbert Boyer and Stanley Norman Cohen. Using this plasmid they have demonstrated that a gene from a frog could be transferred into bacterial cells and then expressed by the bacterial cells. The plasmid is a natural plasmid from ''Salmonella panama''. History In the early 1970s, Herbert Boyer and Stanley Norman Cohen Stanley Norman Cohen (born February 17, 1935) is an American geneticist and the Kwoh-Ting Li Professor in the Stanford University School of Medicine. Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living o ... produced pSC101, the first plasmid vector for cloning purposes. Soon after successfully cloning two pSC101 plasmids together to create one large plasmid, they published the results describing the experiment, in 1973. The cloning of genes into plasmids occurred soon after. In 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ColE1
ColE1 is a plasmid found in bacteria. Its name derives from the fact that it carries a gene for colicin E1 (the ''cea'' gene). It also codes for immunity from this product with the ''imm'' gene. In addition, the plasmid has a series of mobility (''mob'') genes. Its size and the presence of a single EcoRI recognition site caused it to be considered as a vector candidate. Replication ColE1 replication begins at the origin. 555 bp upstream from this point, RNA polymerase initiates transcription of RNAII which acts as a pre-primer and begins the synthesis of the leader strand. The transcript folds into a secondary structure which stabilises the interaction between the nascent RNA and the origin's DNA. This hybrid is attacked by RNase H, which cleaves the RNA strand, exposing a 3' hydroxyl group. This allows the extension of the leading strand by DNA polymerase I. Lagging strand synthesis is later initiated by a primase encoded by the host cell. Replication is carried out ent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transcription (genetics)
Transcription is the process of copying a segment of DNA into RNA for the purpose of gene expression. Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs). Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript. In virology, the term transcription is used when referring to mRNA synthesis from a viral RNA molecule. The genome of many RNA viruses is composed of negative-sense RNA which acts as a template for positive sense viral messenger RNA - a necessary step in the synthesis of viral proteins needed for viral replication. This process is catalyzed by a viral RNA dependent RNA polymerase. Background A DNA transcription unit encoding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

DNA Ligase
DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA). Single-strand breaks are repaired by DNA ligase using the complementary strand of the double helix as a template, with DNA ligase creating the final phosphodiester bond to fully repair the DNA. DNA ligase is used in both DNA repair and DNA replication (see '' Mammalian ligases''). In addition, DNA ligase has extensive use in molecular biology laboratories for recombinant DNA experiments (see '' Research applications''). Purified DNA ligase is used in gene cloning to join DNA molecules together to form recombinant DNA. Enzymatic mechanism The mechanism of DNA ligase is to form two covalent phosphodiester bonds between ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beta-lactamase
Beta-lactamases (β-lactamases) are enzymes () produced by bacteria that provide multi-resistance to beta-lactam antibiotics such as penicillins, cephalosporins, cephamycins, monobactams and carbapenems ( ertapenem), although carbapenems are relatively resistant to beta-lactamase. Beta-lactamase provides antibiotic resistance by breaking the antibiotics' structure. These antibiotics all have a common element in their molecular structure: a four-atom ring known as a beta-lactam (β-lactam) ring. Through hydrolysis, the enzyme lactamase breaks the β-lactam ring open, deactivating the molecule's antibacterial properties. Beta-lactamases produced by gram-negative bacteria are usually secreted, especially when antibiotics are present in the environment. Structure The structure of a '' Streptomyces'' serine β-lactamase (SBLs) is given by . The alpha-beta fold () resembles that of a DD-transpeptidase, from which the enzyme is thought to have evolved. β-lactam antibio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PstI
PstI is a type II restriction endonuclease isolated from the Gram negative species, ''Providencia stuartii''. Function PstI cleaves DNA at the recognition sequence 5′-CTGCA/G-3′ generating fragments with 3′-cohesive termini. This cleavage yields sticky ends 4 base pairs long. PstI is catalytically active as a dimer. The two subunits are related by a 2-fold symmetry axis which in the complex with the substrate coincides with the dyad axis of the recognition sequence. It has a molecular weight of 69,500 and contains 54 positive and 41 negatively charged residues. The PstI restriction/modification (R/M) system has two components: a restriction enzyme that cleaves foreign DNA, and a methyltransferase which protect native DNA strands by methylation of the adenine base inside the recognition sequence. The combination of both provide is a defense mechanism against invading viruses. The methyltransferase and endonuclease are encoded as two separate proteins and act independentl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

EcoRI
EcoRI (pronounced "eco R one") is a restriction endonuclease enzyme isolated from species '' E. coli.'' It is a restriction enzyme that cleaves DNA double helices into fragments at specific sites, and is also a part of the restriction modification system. The ''Eco'' part of the enzyme's name originates from the species from which it was isolated"E" denotes generic name, "Escherichia", and "co" denotes species name, "coli"while the R represents the particular strain, in this case RY13, and the I denotes that it was the first enzyme isolated from this strain. In molecular biology it is used as a restriction enzyme. EcoRI creates 4 nucleotide sticky ends with 5' end overhangs of AATT. The nucleic acid recognition sequence where the enzyme cuts is G↓AATTC, which has a palindromic complementary sequence of CTTAA↓G. Other restriction enzymes, depending on their cut sites, can also leave 3' overhangs or blunt ends with no overhangs. History EcoRI is an example of type II restrict ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Promoter (genetics)
In genetics, a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter. The RNA transcript may encode a protein (mRNA), or can have a function in and of itself, such as tRNA or rRNA. Promoters are located near the transcription start sites of genes, upstream on the DNA (towards the 5' region of the sense strand). Promoters can be about 100–1000 base pairs long, the sequence of which is highly dependent on the gene and product of transcription, type or class of RNA polymerase recruited to the site, and species of organism. Overview For transcription to take place, the enzyme that synthesizes RNA, known as RNA polymerase, must attach to the DNA near a gene. Promoters contain specific DNA sequences such as response elements that provide a secure initial binding site for RNA polymerase and for proteins called transcription factors that recruit RNA polymerase. These transcription factor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]