HOME



picture info

Newton–Cotes Formulas
In numerical analysis, the Newton–Cotes formulas, also called the Newton–Cotes quadrature rules or simply Newton–Cotes rules, are a group of formulas for numerical integration (also called ''quadrature'') based on evaluating the integrand at equally spaced points. They are named after Isaac Newton and Roger Cotes. Newton–Cotes formulas can be useful if the value of the integrand at equally spaced points is given. If it is possible to change the points at which the integrand is evaluated, then other methods such as Gaussian quadrature and Clenshaw–Curtis quadrature are probably more suitable. Description It is assumed that the value of a function defined on [a, b] is known at n + 1 equally spaced points: a \leq x_0 < x_1 < \dots < x_n \leq b. There are two classes of Newton–Cotes quadrature: they are called "closed" when x_0 = a and x_n = b, i.e. they use the function values at the interval endpoints, and "open" when x_0 > a
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simpson Rule
In numerical integration, Simpson's rules are several approximations for definite integrals, named after Thomas Simpson (1710–1761). The most basic of these rules, called Simpson's 1/3 rule, or just Simpson's rule, reads \int_a^b f(x) \, dx \approx \frac \left (a) + 4f\left(\frac\right) + f(b)\right In German and some other languages, it is named after Johannes Kepler, who derived it in 1615 after seeing it used for wine barrels (barrel rule, ). The approximate equality in the rule becomes exact if is a polynomial up to and including 3rd degree. If the 1/3 rule is applied to ''n'' equal subdivisions of the integration range 'a'', ''b'' one obtains the composite Simpson's 1/3 rule. Points inside the integration range are given alternating weights 4/3 and 2/3. Simpson's 3/8 rule, also called Simpson's second rule, requires one more function evaluation inside the integration range and gives lower error bounds, but does not improve the order of the error. If the 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interpolation
In the mathematics, mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points. In engineering and science, one often has a number of data points, obtained by sampling (statistics), sampling or experimentation, which represent the values of a function for a limited number of values of the Dependent and independent variables, independent variable. It is often required to interpolate; that is, estimate the value of that function for an intermediate value of the independent variable. A closely related problem is the function approximation, approximation of a complicated function by a simple function. Suppose the formula for some given function is known, but too complicated to evaluate efficiently. A few data points from the original function can be interpolated to produce a simpler function which is still fairly close to the original. The resulting gai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrature (geometry)
In mathematics, quadrature is a historic term for the computation of area (mathematics), areas and is thus used for computation of integrals. The word is derived from the Latin ''quadratus'' meaning "square". The reason is that, for Ancient Greek mathematicians, the computation of an area consisted of constructing a square of the same area. In this sense, the modern term is squaring. For example, the quadrature of the circle, (or squaring the circle) is a famous old problem that has been shown, in the 19th century, to be impossible with the methods available to the Ancient Greeks, Integral calculus, introduced in the 17th century, is a general method for computation of areas. ''Quadrature'' came to refer to the computation of any integral; such a computation is presently called more often "integral" or "integration". However, the computation of solutions of differential equations and differential systems is also called ''integration'', and ''quadrature'' remains useful for dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Integration
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral. The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature; others take "quadrature" to include higher-dimensional integration. The basic problem in numerical integration is to compute an approximate solution to a definite integral :\int_a^b f(x) \, dx to a given degree of accuracy. If is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ('' quadrature'' or ''squaring''), as in the quadrature of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectangle Method
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is in numerical integration, i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule. It can also be applied for approximating the length of curves and other approximations. The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics—sometimes infinitesimally small) that together form a region that is similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together. This approach can be used to find a numerical approximation for a definite integral even if the fundamental theorem of calculus does not make it easy to find a closed-form solution. Because the region by the small shapes is usually not e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abramowitz And Stegun
''Abramowitz and Stegun'' (''AS'') is the informal name of a 1964 mathematical reference work edited by Milton Abramowitz and Irene Stegun of the United States National Bureau of Standards (NBS), now the National Institute of Standards and Technology (NIST). Its full title is ''Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables''. A digital successor to the Handbook was released as the " Digital Library of Mathematical Functions" (DLMF) on 11 May 2010, along with a printed version, the '' NIST Handbook of Mathematical Functions'', published by Cambridge University Press. Overview Since it was first published in 1964, the 1046-page ''Handbook'' has been one of the most comprehensive sources of information on special functions, containing definitions, identities, approximations, plots, and tables of values of numerous functions used in virtually all fields of applied mathematics. The notation used in the ''Handbook'' is the '' de facto'' standard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boole's Rule
In mathematics, Boole's rule, named after George Boole, is a method of numerical integration. Formula Simple Boole's Rule It approximates an integral: \int_^ f(x)\,dx by using the values of at five equally spaced points: \begin & x_0 = a\\ & x_1 = x_0 + h \\ & x_2 = x_0 + 2h \\ & x_3 = x_0 + 3h \\ & x_4 = x_0 + 4h = b \end It is expressed thus in Abramowitz and Stegun: \int_^ f(x)\,dx = \frac\bigl 7f(x_0) + 32 f(x_1) + 12 f(x_2) + 32 f(x_3) + 7f(x_4) \bigr+ \text where the error term is -\,\frac for some number between and where . It is often known as Bode's rule, due to a typographical error that propagated from Abramowitz and Stegun. The following constitutes a very simple implementation of the method in Common Lisp which ignores the error term: Composite Boole's Rule In cases where the integration is permitted to extend over equidistant sections of the interval , b/math>, the composite Boole's rule might be applied. Given N divisions, where N mod 4 = 0, the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trapezoidal Rule
In calculus, the trapezoidal rule (or trapezium rule in British English) is a technique for numerical integration, i.e., approximating the definite integral: \int_a^b f(x) \, dx. The trapezoidal rule works by approximating the region under the graph of the function f(x) as a trapezoid and calculating its area. It follows that \int_^ f(x) \, dx \approx (b-a) \cdot \tfrac(f(a)+f(b)). The integral can be even better approximated by Partition of an interval, partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite") trapezoidal rule is usually what is meant by "integrating with the trapezoidal rule". Let \ be a partition of [a,b] such that a=x_0 < x_1 < \cdots < x_ < x_N = b and \Delta x_k be the length of the k-th subinterval (that is, \Delta x_k = x_k - x_), then \int_a^b f(x) \, dx \approx \sum_^N \frac \Delta ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt to find approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences like economics, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Runge's Phenomenon
In the mathematical field of numerical analysis, Runge's phenomenon () is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points. It was discovered by Carl David Tolmé Runge (1901) when exploring the behavior of errors when using polynomial interpolation to approximate certain functions. The discovery shows that going to higher degrees does not always improve accuracy. The phenomenon is similar to the Gibbs phenomenon in Fourier series approximations. The Weierstrass approximation theorem states that for every continuous function f(x) defined on an interval , b/math>, there exists a set of polynomial functions P_n(x) for n=0, 1, 2, \ldots, each of degree at most n, that approximates f(x) with uniform convergence over , b/math> as n tends to infinity. This can be expressed as: :\lim_ \left( \sup_ \left, f(x) - P_n(x) \ \right) = 0. Consider the case w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrange Polynomial
In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs (x_j, y_j) with 0 \leq j \leq k, the x_j are called ''nodes'' and the y_j are called ''values''. The Lagrange polynomial L(x) has degree \leq k and assumes each value at the corresponding node, L(x_j) = y_j. Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler. Uses of Lagrange polynomials include the Newton–Cotes method of numerical integration, Shamir's secret sharing scheme in cryptography, and Reed–Solomon error correction in coding theory. For equispaced nodes, Lagrange interpolation is susceptible to Runge's phenomenon of large oscillation. Definition Given a set of k + 1 nodes \, which must all be distinct, x_j \neq x_m for ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]