Middle Cerebellar Peduncles
   HOME
*





Middle Cerebellar Peduncles
The middle cerebellar peduncle (brachium pontis) is a paired structure of the brain. It connects the pons to the cerebellum, with fibres originating from the pontine nucleus and travelling to the opposite hemisphere of the cerebellar cortex. It is supplied by the anterior inferior cerebellar artery (AICA) and branches from the basilar artery. It conveys information from the cerebrum and the pons to the cerebellum. Structure The middle cerebellar peduncle connects the pons to the cerebellum. It only contains fibres from the pons to the cerebellum. The fibers arise from the pontine nucleus, and travel to the opposite hemisphere of the cerebellar cortex. Fibers cross over before entering the middle cerebellar peduncle and the cerebellum. The fibers of the middle cerebellar peduncle are arranged in three fasciculi: superior, inferior, and deep. * The ''superior fasciculus'', the most superficial, is derived from the upper transverse fibers of the pons; it is directed backward and l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brain
A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons, and the estimated number of neurons in the cerebellum is 55–70 billion. Each neuron is connected by synapses to several thousand other neurons. These neurons typically communicate with one another by means of long fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body targeting specific recipient cells. Physiologically, brains exert centralized control over a body's other organs. They act on the rest of the body both by generating patterns of muscle activity and by driving the secretion of chemicals called hormones. This centralized control allows rapid and coordinated responses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE