HOME





Moore Space (algebraic Topology)
In algebraic topology, a branch of mathematics, Moore space is the name given to a particular type of topological space that is the homology analogue of the Eilenberg–Maclane spaces of homotopy theory, in the sense that it has only one nonzero homology (rather than homotopy) group. The study of Moore spaces was initiated by John Coleman Moore in 1954. Formal definition Given an abelian group ''G'' and an integer ''n'' ≥ 1, let ''X'' be a CW complex such that :H_n(X) \cong G and :\tilde_i(X) \cong 0 for ''i'' ≠ ''n'', where H_n(X) denotes the ''n''-th singular homology group of ''X'' and \tilde_i(X) is the ''i''-th reduced homology group. Then ''X'' is said to be a Moore space. It's also sensible to require (as Moore did) that ''X'' be simply-connected if ''n''>1.Moore 1954 Examples *S^n is a Moore space of \mathbb for n\geq 1. *\mathbb^2 is a Moore space of \mathbb/2\mathbb for n=1. See also * Eilenberg–MacLane space, the homotopy analog. * Homology sphere In alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homology Theory
In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian groups called ''homology groups.'' This operation, in turn, allows one to associate various named ''homologies'' or ''homology theories'' to various other types of mathematical objects. Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the ''homology of a topological space''. (This latter notion of homology admits more intuitive descriptions for 1- or 2-dimensional topological spaces, and is sometimes referenced in popular mathematics.) There is also a related notion of the cohomology of a cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space. Homology of chain complexes To take the homology o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eilenberg–Maclane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. Assuming that ''G'' is abelian in the case that n > 1, Eilenberg–MacLane spaces of type K(G,n) always exist, and are all weak homotopy equivalent. Thus, one may consider K(G,n) as referring to a weak homotopy equivalence class of spaces. It is common to refer to any representative as "a K(G,n)" or as "a model of K(G,n)". Moreover, it is comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline. Applications to other fields of mathematics Besides algebraic topology, the theory has also been used in other areas of mathematics such as: * Algebraic geometry (e.g., A1 homotopy theory, A1 homotopy theory) * Category theory (specifically the study of higher category theory, higher categories) Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid Pathological (mathematics), pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being Category of compactly generated weak Hausdorff spaces, compactly generated weak Hausdorff or a CW complex. In the same vein as above, a "Map (mathematics), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Coleman Moore
John Coleman Moore (May 27, 1923 – January 1, 2016) was an American mathematician. The Borel−Moore homology and Eilenberg–Moore spectral sequence are named after him. Early life and education Moore was born in 1923 in Staten Island, New York. He received his B.A. in 1948 from the Massachusetts Institute of Technology and his Ph.D. in 1952 from Brown University under the supervision of George W. Whitehead. Career Moore began his career at Princeton University as an instructor, and was eventually promoted to full professor in 1961. He retired from Princeton in 1989, after which he took a half-time position at the University of Rochester. His most-cited paper is on Hopf algebras, co-authored with John Milnor. As a faculty member at Princeton University, he advised 24 students and is the academic ancestor of over 1000 mathematicians. He was an Invited Speaker at the International Congress of Mathematicians in 1958 in Edinburgh and in 1970 in Nice. In 1983, a confere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CW Complex
In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. (open access) CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. Definition CW complex A CW complex is constructed by taking the union of a sequence of topological spaces \emptyset = X_ \subset X_0 \subset X_1 \subset \cdots such that each X_k is obtained from X_ by gluing copies of k-cells (e^k_\alpha)_\alpha, each homeomorphic to the open k- bal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the simplex, standard -simplex to a topological space, and composing them into Free abelian group#Integer functions and formal sums, formal sums, called singular chains. The boundary operation – mapping each n-dimensional simplex to its (n-1)-dimensional boundary operator, boundary – induces the singular chain complex. The singular homology is then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduced Homology
In mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise statements to be made (as in Alexander duality) and eliminates many exceptional cases (as in the homology groups of spheres). If ''P'' is a single-point space, then with the usual definitions the integral homology group :''H''0(''P'') is isomorphic to \mathbb (an infinite cyclic group), while for ''i'' ≥ 1 we have :''H''''i''(''P'') = . More generally if ''X'' is a simplicial complex or finite CW complex, then the group ''H''0(''X'') is the free abelian group with the connected components of ''X'' as generators. The reduced homology should replace this group, of rank ''r'' say, by one of rank ''r'' − 1. Otherwise the homology groups should remain unchanged. An ''ad hoc'' way to do this is to think of a 0-th homology class no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]