Milnor K-theory
In mathematics, Milnor K-theory is an algebraic invariant (denoted K_*(F) for a field F) defined by as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebraic and give some insight about its relationships with other parts of mathematics, such as Galois cohomology and the Grothendieck–Witt ring of quadratic forms. Before Milnor K-theory was defined, there existed ad-hoc definitions for K_1 and K_2. Fortunately, it can be shown Milnor is a part of algebraic , which in general is the easiest part to compute. Definition Motivation After the definition of the Grothendieck group K(R) of a commutative ring, it was expected there should be a sequence of invariants K_i(R) called higher groups, from the fact that there exists a short exact sequence :K(R,I) \to K(R) \to K(R/I) \to 0 which should have a continuation by a long exact sequence. Note the group on the left is relative . This led to muc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matsumoto's Theorem (K-theory)
Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the ''K''-groups of the integers. ''K''-theory was discovered in the late 1950s by Alexander Grothendieck in his study of intersection theory on algebraic varieties. In the modern language, Grothendieck defined only ''K''0, the zeroth ''K''-group, but even this single group has plenty of applications, such as the Grothendieck–Riemann–Roch theorem. Intersection theory is still a motivating force in the development of (higher) algebraic ''K''-theory through its links with motivic cohomology and specifically Chow groups. The subject also includes cla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motivic Homotopy Theory
In music, a motif () or motive is a short musical idea, a salient recurring figure, musical fragment or succession of notes that has some special importance in or is characteristic of a composition. The motif is the smallest structural unit possessing thematic identity. History The defines a motif as a "melodic, rhythmic, or harmonic cell", whereas the 1958 maintains that it may contain one or more cells, though it remains the smallest analyzable element or phrase within a subject. It is commonly regarded as the shortest subdivision of a theme or phrase that still maintains its identity as a musical idea. "The smallest structural unit possessing thematic identity". Grove and Larousse also agree that the motif may have harmonic, melodic and/or rhythmic aspects, Grove adding that it "is most often thought of in melodic terms, and it is this aspect of the motif that is connoted by the term 'figure'." A harmonic motif is a series of chords defined in the abstract, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motivic Cohomology
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology. Motivic homology and cohomology Let ''X'' be a scheme of finite type over a field ''k''. A key goal of algebraic geometry is to compute the Chow groups of ''X'', because they give strong information about all subvarieties of ''X''. The Chow groups of ''X'' have some of the formal properties of Borel–Moore homology in topology, but some things are missing. For example, for a closed subscheme ''Z'' of ''X'', there is an exact sequence of Chow groups, the localization sequence :CH_i(Z) \rightarrow CH_i(X) \rightarrow CH_i(X-Z) \rightarrow 0, whereas in topology this would be part of a long exact sequence. This problem was resolved by generalizing Chow groups to a bigr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Daniel Quillen
Daniel Gray Quillen (June 22, 1940 – April 30, 2011) was an American mathematician. He is known for being the "prime architect" of higher algebraic ''K''-theory, for which he was awarded the Cole Prize in 1975 and the Fields Medal in 1978. From 1984 to 2006, he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. Education and career Quillen was born in Orange, New Jersey, and attended Newark Academy. He entered Harvard University, where he earned both his AB, in 1961, and his PhD in 1964; the latter completed under the supervision of Raoul Bott, with a thesis in partial differential equations. He was a Putnam Fellow in 1959. Quillen obtained a position at the Massachusetts Institute of Technology after completing his doctorate. He also spent a number of years at several other universities. He visited France twice: first as a Sloan Fellow in Paris, during the academic year 1968–69, where he was greatly influenced by Grothendieck, and then, d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bloch's Higher Chow Group
In algebraic geometry, Bloch's higher Chow groups, a generalization of Chow group, is a precursor and a basic example of motivic cohomology (for smooth varieties). It was introduced by Spencer Bloch and the basic theory has been developed by Bloch and Marc Levine. In more precise terms, a theorem of Voevodsky implies: for a smooth scheme ''X'' over a field and integers ''p'', ''q'', there is a natural isomorphism :\operatorname^p(X; \mathbb(q)) \simeq \operatorname^q(X, 2q - p) between motivic cohomology groups and higher Chow groups. Motivation One of the motivations for higher Chow groups comes from homotopy theory. In particular, if \alpha,\beta \in Z_*(X) are algebraic cycles in X which are rationally equivalent via a cycle \gamma \in Z_*(X\times \Delta^1), then \gamma can be thought of as a path between \alpha and \beta, and the higher Chow groups are meant to encode the information of higher homotopy coherence. For example,\text^*(X,0)can be thought of as the homotopy cla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Closed Field
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Definition A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with coefficients in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supercommutative Algebra
In mathematics, a supercommutative (associative) algebra is a superalgebra (i.e. a Z2-graded algebra) such that for any two homogeneous elements ''x'', ''y'' we have :yx = (-1)^xy , where , ''x'', denotes the grade of the element and is 0 or 1 (in Z) according to whether the grade is even or odd, respectively. Equivalently, it is a superalgebra where the supercommutator : ,y= xy - (-1)^yx always vanishes. Algebraic structures which supercommute in the above sense are sometimes referred to as skew-commutative associative algebras to emphasize the anti-commutation, or, to emphasize the grading, graded-commutative or, if the supercommutativity is understood, simply commutative. Any commutative algebra is a supercommutative algebra if given the trivial gradation (i.e. all elements are even). Grassmann algebras (also known as exterior algebras) are the most common examples of nontrivial supercommutative algebras. The supercenter of any superalgebra is the set of elements that s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two-sided Ideal
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplicative Group
In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field ''F'', the group is , where 0 refers to the zero element of ''F'' and the binary operation • is the field multiplication, *the algebraic torus GL(1). Examples *The multiplicative group of integers modulo ''n'' is the group under multiplication of the invertible elements of \mathbb/n\mathbb. When ''n'' is not prime, there are elements other than zero that are not invertible. * The multiplicative group of positive real numbers \mathbb^+ is an abelian group with 1 its identity element. The logarithm is a group isomorphism of this group to the additive group of real numbers, \mathbb. * The multiplicative group of a field F is the set of all nonzero elements: F^\times = F -\, under the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |