Lucas–Lehmer Primality Test
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1878 and subsequently proved by Derrick Henry Lehmer in 1930. The test The Lucas–Lehmer test works as follows. Let ''M''''p'' = 2''p'' − 1 be the Mersenne number to test with ''p'' an odd prime. The primality of ''p'' can be efficiently checked with a simple algorithm like trial division since ''p'' is exponentially smaller than ''M''''p''. Define a sequence \ for all ''i'' ≥ 0 by : s_i= \begin 4 & \texti=0; \\ s_^2-2 & \text \end The first few terms of this sequence are 4, 14, 194, 37634, ... . Then ''M''''p'' is prime if and only if :s_ \equiv 0 \pmod. The number ''s''''p'' − 2 mod ''M''''p'' is called the Lucas–Lehmer residue of ''p''. (Some authors equivalently set ''s''1 = 4 and test ''s''''p''−1 mod ''M''''p''). In pseudocode, the test m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AKS Primality Test
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". The algorithm was the first one which is able to determine in polynomial time, whether a given number is prime or composite without relying on mathematical conjectures such as the generalized Riemann hypothesis. The proof is also notable for not relying on the field of analysis. In 2006 the authors received both the Gödel Prize and Fulkerson Prize for their work. Importance AKS is the first primality-proving algorithm to be simultaneously ''general'', ''polynomial-time'', ''deterministic'', and ''unconditionally correct''. Previous algorithms had been developed for centuries and achieved three of these properties at most, but no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Prime Pages
The PrimePages is a website about prime numbers originally created by Chris Caldwell at the University of Tennessee at Martin who maintained it from 1994 to 2023. The site maintains the list of the "5,000 largest known primes", selected smaller primes of special forms, and many "top twenty" lists for primes of various forms. The PrimePages has articles on primes and primality testing. It includes "The Prime Glossary" with articles on hundreds of glosses related to primes, and "Prime Curios!" with thousands of curios about specific numbers. The database started as a list of "titanic primes" (primes with at least 1000 decimal digits) by Samuel Yates in 1984. On March 11, 2023, the PrimePages moved from primes.utm.edu to t5k.org, and is no longer maintained by Caldwell. See also * List of largest known primes and probable primes *List of prime numbers This is a list of articles about prime numbers. A prime number (or ''prime'') is a natural number greater than 1 that has no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Great Internet Mersenne Prime Search
The Great Internet Mersenne Prime Search (GIMPS) is a collaborative project of volunteers who use freely available software to search for Mersenne prime numbers. GIMPS was founded in 1996 by George Woltman, who also wrote the Prime95 client and its Linux port MPrime. Scott Kurowski wrote the back-end PrimeNet server (computing), server to demonstrate volunteer computing software by Entropia, a company he founded in 1997. GIMPS is registered as Mersenne Research, Inc. with Kurowski as Executive Vice President and board director. GIMPS is said to be one of the first large-scale volunteer computing projects over the Internet for research purposes. , the project has found a total of eighteen Mersenne primes, sixteen of which were the largest known prime number at their respective times of discovery. The largest known prime number, prime is 2136,279,841 − 1 (or M136,279,841 for short) and was discovered on October 12, 2024, by Luke Durant. On December 4, 2020, the project ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat's Little Theorem
In number theory, Fermat's little theorem states that if is a prime number, then for any integer , the number is an integer multiple of . In the notation of modular arithmetic, this is expressed as a^p \equiv a \pmod p. For example, if and , then , and is an integer multiple of . If is not divisible by , that is, if is coprime to , then Fermat's little theorem is equivalent to the statement that is an integer multiple of , or in symbols: a^ \equiv 1 \pmod p. For example, if and , then , and is a multiple of . Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it in 1640. It is called the "little theorem" to distinguish it from Fermat's Last Theorem.. History Pierre de Fermat first stated the theorem in a letter dated October 18, 1640, to his friend and confidant Frénicle de Bessy. His formulation is equivalent to the following ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proofs Of Fermat's Little Theorem
This article collects together a variety of proofs of Fermat's little theorem, which states that :a^p \equiv a \pmod p for every prime number ''p'' and every integer ''a'' (see modular arithmetic). Simplifications Some of the proofs of Fermat's little theorem given below depend on two simplifications. The first is that we may assume that is in the range . This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce modulo . This is consistent with reducing a^p modulo , as one can check. Secondly, it suffices to prove that :a^ \equiv 1 \pmod p for in the range . Indeed, if the previous assertion holds for such , multiplying both sides by yields the original form of the theorem, :a^p \equiv a \pmod p On the other hand, if , the theorem holds trivially. Combinatorial proofs Proof by counting necklaces This is perhaps the simplest known proof, requiring the least mathematical background. It is an attractive example ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Residue
In number theory, an integer ''q'' is a quadratic residue modulo operation, modulo ''n'' if it is Congruence relation, congruent to a Square number, perfect square modulo ''n''; that is, if there exists an integer ''x'' such that :x^2\equiv q \pmod. Otherwise, ''q'' is a quadratic nonresidue modulo ''n''. Quadratic residues are used in applications ranging from acoustical engineering to cryptography and the Integer factorization, factoring of large numbers. History, conventions, and elementary facts Fermat, Euler, Joseph Louis Lagrange, Lagrange, Adrien-Marie Legendre, Legendre, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of Gauss's ''Disquisitiones Arithmeticae'' (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and says that if the context makes it clear, the adjective "quadratic" may be dropped. For a giv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler's Criterion
In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely, Let ''p'' be an odd prime and ''a'' be an integer coprime to ''p''. Then : a^ \equiv \begin \;\;\,1\pmod& \textx \textx^2\equiv a \pmod,\\ -1\pmod& \text \end Euler's criterion can be concisely reformulated using the Legendre symbol: : \left(\frac\right) \equiv a^ \pmod p. The criterion dates from a 1748 paper by Leonhard Euler.L Euler, Novi commentarii Academiae Scientiarum Imperialis Petropolitanae, 8, 1760-1, 74; Opusc Anal. 1, 1772, 121; Comm. Arith, 1, 274, 487 Proof The proof uses the fact that the residue classes modulo a prime number are a field. See the article prime field for more details. Because the modulus is prime, Lagrange's theorem applies: a polynomial of degree can only have at most roots. In particular, has at most 2 solutions for each . This immediately implies that besides 0 there are at least distinct quadrati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Nonresidue
In number theory, an integer ''q'' is a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; that is, if there exists an integer ''x'' such that :x^2\equiv q \pmod. Otherwise, ''q'' is a quadratic nonresidue modulo ''n''. Quadratic residues are used in applications ranging from acoustical engineering to cryptography and the factoring of large numbers. History, conventions, and elementary facts Fermat, Euler, Lagrange, Legendre, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of Gauss's ''Disquisitiones Arithmeticae'' (1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and says that if the context makes it clear, the adjective "quadratic" may be dropped. For a given ''n'', a list of the quadratic residues modulo ''n'' may be obtained by simply squaring all the numbers 0, 1, ..., . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Legendre Symbol
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number ''p'': its value at a (nonzero) quadratic residue mod ''p'' is 1 and at a non-quadratic residue (''non-residue'') is −1. Its value at zero is 0. The Legendre symbol was introduced by Adrien-Marie Legendre in 1797 or 1798 in the course of his attempts at proving the law of quadratic reciprocity. Generalizations of the symbol include the Jacobi symbol and Dirichlet characters of higher order. The notational convenience of the Legendre symbol inspired introduction of several other "symbols" used in algebraic number theory, such as the Hilbert symbol and the Artin symbol. Definition Let p be an odd prime number. An integer a is a quadratic residue modulo p if it is modular arithmetic, congruent to a square number, perfect square modulo p and is a quadratic nonresidue modulo p otherwise. The Legendre symbol is a function of a a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order (group Theory)
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |