HOME





Localizing Subcategory
In mathematics, Serre and localizing subcategories form important classes of subcategories of an abelian category. Localizing subcategories are certain Serre subcategories. They are strongly linked to the notion of a quotient category. Serre subcategories Let \mathcal be an abelian category. A non-empty full subcategory \mathcal is called a ''Serre subcategory'' (or also a ''dense subcategory''), if for every short exact sequence 0\rightarrow A' \rightarrow A\rightarrow A''\rightarrow 0 in \mathcal the object A is in \mathcal if and only if the objects A' and A'' belong to \mathcal. In words: \mathcal is closed under subobjects, quotient objects and extensions. Each Serre subcategory \mathcal of \mathcal is itself an abelian category, and the inclusion functor \mathcal\to\mathcal is exact. The importance of this notion stems from the fact that kernels of exact functors between abelian categories are Serre subcategories, and that one can build (for locally small \mathcal) the q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subcategory
In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, a subcategory of ''C'' is a category obtained from ''C'' by "removing" some of its objects and arrows. Formal definition Let ''C'' be a category. A subcategory ''S'' of ''C'' is given by *a subcollection of objects of ''C'', denoted ob(''S''), *a subcollection of morphisms of ''C'', denoted hom(''S''). such that *for every ''X'' in ob(''S''), the identity morphism id''X'' is in hom(''S''), *for every morphism ''f'' : ''X'' → ''Y'' in hom(''S''), both the source ''X'' and the target ''Y'' are in ob(''S''), *for every pair of morphisms ''f'' and ''g'' in hom(''S'') the composite ''f'' o ''g'' is in hom(''S'') whenever it is defined. These conditions ensure that ''S'' is a category in its own right: its collection of objects is ob(''S'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Full And Faithful Functors
In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor. Formal definitions Explicitly, let ''C'' and ''D'' be (locally small) categories and let ''F'' : ''C'' → ''D'' be a functor from ''C'' to ''D''. The functor ''F'' induces a function :F_\colon\mathrm_(X,Y)\rightarrow\mathrm_(F(X),F(Y)) for every pair of objects ''X'' and ''Y'' in ''C''. The functor ''F'' is said to be *faithful if ''F''''X'',''Y'' is injectiveJacobson (2009), p. 22 *full if ''F''''X'',''Y'' is surjectiveMac Lane (1971), p. 14 *fully faithful (= full and faithful) if ''F''''X'',''Y'' is bijective for each ''X'' and ''Y'' in ''C''. Properties A faithful functor need not be injective on objects or morphisms. That is, two objects ''X'' and ''X''′ may map to the same object in ''D'' (which is why the range of a full and faithful functor is not necessarily isomorphi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nicolae Popescu
Nicolae Popescu (; 22 September 1937 – 29 July 2010) was a Romanian mathematician and professor at the University of Bucharest. He also held a research position at the Institute of Mathematics of the Romanian Academy, and was elected corresponding Member of the Romanian Academy in 1997. He is best known for his contributions to algebra and the theory of abelian categories. From 1964 to 2007 he collaborated with Pierre Gabriel on the characterization of abelian categories; their best-known result is the Gabriel–Popescu theorem, published in 1964. His areas of expertise were category theory, abelian categories with applications to rings and modules, adjoint functors, limits and colimits, the theory of sheaves, the theory of rings, fields and polynomials, and valuation theory. He also had interests and published in algebraic topology, algebraic geometry, commutative algebra, K-theory, class field theory, and algebraic function theory. Biography Popescu was born on Sept ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Giraud Subcategory
Giraud is a surname. It is a variant of the Proto-Germanic name ''Gerard'', meaning spear-strong. Notable people with this surname * Alain Giraud (born 1959), French chef * Albert Giraud (1860–1929), Belgian poet * Alexis Giraud-Teulon (1839–1916), French academic, lawyer and translator * Brigitte Giraud (born 1960), French writer * Charles Giraud (1802–81), French lawyer and politician * Claude Giraud (1936-2020), French actor * Dwight Giraud, Barbadian-Canadian drag performer * Georges Giraud (1889–1943), French mathematician * Giovanni Giraud (1776–1834), Italian dramatist * Henri Giraud (1879–1949), French general during World Wars I and II * Hervé Giraud (born 1957), French Catholic prelate * Hubert Giraud (composer) (1920–2016), French composer and lyricist * Jean Giraud (1938–2012), French comics artist * Jean Giraud (mathematician) (1936–2007), French mathematician * Jean-Baptiste Giraud (1752–1830), French sculptor * Joyce Giraud (born 1975) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Modules
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring of integers Z, it is the same thing as the category of abelian groups. The category of right modules is defined in a similar way. One can also define the category of bimodules over a ring ''R'' but that category is equivalent to the category of left (or right) modules over the enveloping algebra of ''R'' (or over the opposite of that). Note: Some authors use the term module category for the category of modules. This term can be ambiguous since it could also refer to a category with a monoidal-category action. Properties The categories of left and right modules are abelian categories. These categories have enough projectives and enough injectives. Mitchell's embedding theorem states every abelian category arises as a full sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsion Theory
In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring. The first example of a radical was the nilradical introduced by , based on a suggestion of . In the next few years several other radicals were discovered, of which the most important example is the Jacobson radical. The general theory of radicals was defined independently by and . The study of radicals is called torsion theory. Definitions In the theory of radicals, rings are usually assumed to be associative, but need not be commutative and need not have a multiplicative identity. In particular, every ideal in a ring is also a ring. Let \mathfrak be a class of rings which is: # closed under homomorphic images. That is, for all rings A, B \in \mathfrak and any ring homomorphism f: A \rightarrow B (which may fail to preserve any left- or right-identities) then the image of f is in \mathfrak # closed under taking ideals (for all rings A \in \mathfrak, and I is an i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grothendieck Category
In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957English translation in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's 1962 thesis. To every algebraic variety V one can associate a Grothendieck category \operatorname(V), consisting of the quasi-coherent sheaves on V. This category encodes all the relevant geometric information about V, and V can be recovered from \operatorname(V) (the Gabriel–Rosenberg reconstruction theorem). This example gives rise to one approach to noncommutative algebraic geometry: the study of "non-commutative varieties" is then nothing but the study of (certain) Grothendieck categories. Definition By definition, a Grothendieck category \mathcal is an AB5 category with a generator. Spelled out, this means that * \mathcal is an abelian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective Hull
In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in . Definition A module ''E'' is called the injective hull of a module ''M'', if ''E'' is an essential extension of ''M'', and ''E'' is injective. Here, the base ring is a ring with unity, though possibly non-commutative. Examples * An injective module is its own injective hull. * The injective hull of an integral domain (as a module over itself) is its field of fractions . * The injective hull of a cyclic ''p''-group (as Z-module) is a Prüfer group . * The injective hull of a torsion-free abelian group A is the tensor product \mathbb Q \otimes_ A. * The injective hull of ''R''/rad(''R'') is Hom''k''(''R'',''k''), where ''R'' is a finite-dimensional ''k''-algebra with Jacobson radical rad(''R'') . * A simple module is necessarily the socle of its i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Category
In mathematics, a complete category is a category in which all small limits exist. That is, a category ''C'' is complete if every diagram ''F'' : ''J'' → ''C'' (where ''J'' is small) has a limit in ''C''. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of ''all'' limits (even when ''J'' is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other. A weaker form of completeness is that of finite completeness. A category is finitely complete if all finite limits exists (i.e. limits of diagrams indexed by a finite category ''J''). Dually, a category is finitely cocomplete if all finite colimits exist. Theorems It follows from the existence theorem for limits that a category is complete if and only if it has equalizers (o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit (category Theory)
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as product (category theory), products, pullback (category theory), pullbacks and inverse limits. The duality (category theory), dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushout (category theory), pushouts and direct limits. Limits and colimits, like the strongly related notions of universal property, universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category (mathematics), category C are defined by means of diagrams in C. Formally, a diagram (category theory), diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is tho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]