Local Response Normalization
   HOME





Local Response Normalization
In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely ''data normalization'' and ''activation normalization''. Data normalization (or feature scaling) includes methods that rescale input data so that the features have the same range, mean, variance, or other statistical properties. For instance, a popular choice of feature scaling method is min-max normalization, where each feature is transformed to have the same range (typically ,1/math> or 1,1/math>). This solves the problem of different features having vastly different scales, for example if one feature is measured in kilometers and another in nanometers. Activation normalization, on the other hand, is specific to deep learning, and includes methods that rescale the activation of hidden neurons inside neural networks. Normalization is often used to: * increase the speed of training convergence, * reduce sensitivity to variations and featu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transformer (deep Learning Architecture)
The transformer is a deep learning architecture based on the multi-head attention mechanism, in which text is converted to numerical representations called tokens, and each token is converted into a vector via lookup from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism, allowing the signal for key tokens to be amplified and less important tokens to be diminished. Transformers have the advantage of having no recurrent units, therefore requiring less training time than earlier recurrent neural architectures (RNNs) such as long short-term memory (LSTM). Later variations have been widely adopted for training large language models (LLM) on large (language) datasets. The modern version of the transformer was proposed in the 2017 paper " Attention Is All You Need" by researchers at Google. Transformers were first developed as an improvement ov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Articles With Example Python (programming Language) Code
Article often refers to: * Article (grammar), a grammatical element used to indicate definiteness or indefiniteness * Article (publishing), a piece of nonfictional prose that is an independent part of a publication Article(s) may also refer to: Government and law * Elements of treaties of the European Union * Articles of association, the regulations governing a company, used in India, the UK and other countries; called articles of incorporation in the US * Articles of clerkship, the contract accepted to become an articled clerk * Articles of Confederation, the predecessor to the current United States Constitution * Article of impeachment, a formal document and charge used for impeachment in the United States * Article of manufacture, in the United States patent law, a category of things that may be patented * Articles of organization, for limited liability organizations, a US equivalent of articles of association Other uses * Article element , in HTML * "Articles", a song ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Learning Rate
In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that direction. A too high learning rate will make the learning jump over minima but a too low learning rate will either take too long to converge or get stuck in an undesirable local minimum. In order to achieve faster convergence, prevent oscillations and getting stuck in undesi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperparameter Optimization
In machine learning, hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. The objective function takes a set of hyperparameters and returns the associated loss. Cross-validation is often used to estimate this generalization performance, and therefore choose the set of values for hyperparameters that maximize it. Approaches Grid search The traditional method for hyperparameter optimization has been ''grid search'', or a ''parameter sweep'', which is simply an exhaustive searching through a manually specified subset of the hyperparameter space of a learning algorithm. A grid search algorithm must be guided by so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

AlexNet
AlexNet is a convolutional neural network architecture developed for image classification tasks, notably achieving prominence through its performance in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It classifies images into 1,000 distinct object categories and is regarded as the first widely recognized application of deep convolutional networks in large-scale visual recognition. Developed in 2012 by Alex Krizhevsky in collaboration with Ilya Sutskever and his Ph.D. advisor Geoffrey Hinton at the University of Toronto, the model contains 60 million parameters and 650,000 neurons. The original paper's primary result was that the depth of the model was essential for its high performance, which was computationally expensive, but made feasible due to the utilization of graphics processing units (GPUs) during training. The three formed team SuperVision and submitted AlexNet in the ImageNet Large Scale Visual Recognition Challenge on September 30, 2012. The network ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memoization
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls to pure functions and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing. It is a type of caching, distinct from other forms of caching such as buffering and page replacement. In the context of some logic programming languages, memoization is also known as tabling. Etymology The term ''memoization'' was coined by Donald Michie in 1968 and is derived from the Latin word ('to be remembered'), usually truncated as ''memo'' in American English, and thus carries the meaning of 'turning he results ofa function into something to be remembered'. While ''memoization'' might be confused with ''memorization'' (because they are etymological cognates), ''memoization'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wasserstein GAN
The Wasserstein Generative Adversarial Network (WGAN) is a variant of generative adversarial network, generative adversarial network (GAN) proposed in 2017 that aims to "improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches". Compared with the original GAN discriminator, the Wasserstein GAN discriminator provides a better learning signal to the generator. This allows the training to be more stable when generator is learning distributions in very high dimensional spaces. Motivation The GAN game The original GAN method is based on the GAN game, a zero-sum game with 2 players: generator and discriminator. The game is defined over a probability space (\Omega, \mathcal B, \mu_), The generator's Strategy (game theory), strategy set is the set of all probability measures \mu_G on (\Omega, \mathcal B), and the discriminator's strategy set is the set of measurable functions D: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE