Large Language Model Emergent Abilities
   HOME



picture info

Large Language Model Emergent Abilities
A large language model (LLM) is a language model trained with self-supervised machine learning on a vast amount of text, designed for natural language processing tasks, especially language generation. The largest and most capable LLMs are generative pretrained transformers (GPTs), which are largely used in generative chatbots such as ChatGPT or Gemini. LLMs can be fine-tuned for specific tasks or guided by prompt engineering. These models acquire predictive power regarding syntax, semantics, and ontologies inherent in human language corpora, but they also inherit inaccuracies and biases present in the data they are trained in. History Before the emergence of transformer-based models in 2017, some language models were considered large relative to the computational and data constraints of their time. In the early 1990s, IBM's statistical models pioneered word alignment techniques for machine translation, laying the groundwork for corpus-based language modeling. A smo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Language Model
A language model is a model of the human brain's ability to produce natural language. Language models are useful for a variety of tasks, including speech recognition, machine translation,Andreas, Jacob, Andreas Vlachos, and Stephen Clark (2013)"Semantic parsing as machine translation". Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). natural language generation (generating more human-like text), optical character recognition, route optimization, handwriting recognition, grammar induction, and information retrieval. Large language models (LLMs), currently their most advanced form, are predominantly based on transformers trained on larger datasets (frequently using words scraped from the public internet). They have superseded recurrent neural network-based models, which had previously superseded the purely statistical models, such as word ''n''-gram language model. History Noam Chomsky did pioneering work on lan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithmic Bias
Algorithmic bias describes systematic and repeatable harmful tendency in a computerized sociotechnical system to create " unfair" outcomes, such as "privileging" one category over another in ways different from the intended function of the algorithm. Bias can emerge from many factors, including but not limited to the design of the algorithm or the unintended or unanticipated use or decisions relating to the way data is coded, collected, selected or used to train the algorithm. For example, algorithmic bias has been observed in search engine results and social media platforms. This bias can have impacts ranging from inadvertent privacy violations to reinforcing social biases of race, gender, sexuality, and ethnicity. The study of algorithmic bias is most concerned with algorithms that reflect "systematic and unfair" discrimination. This bias has only recently been addressed in legal frameworks, such as the European Union's General Data Protection Regulation (proposed 2018) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Long Short-term Memory
Long short-term memory (LSTM) is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models, and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps (thus "''long'' short-term memory"). The name is made in analogy with long-term memory and short-term memory and their relationship, studied by cognitive psychologists since the early 20th century. An LSTM unit is typically composed of a cell and three gates: an input gate, an output gate, and a forget gate. The cell remembers values over arbitrary time intervals, and the gates regulate the flow of information into and out of the cell. Forget gates decide what information to discard from the previous state, by mapping the previous state and the current input to a value between 0 and 1. A (rounded) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Seq2seq
Seq2seq is a family of machine learning approaches used for natural language processing. Applications include language translation, image captioning, conversational models, speech recognition, and text summarization. Seq2seq uses sequence transformation: it turns one sequence into another sequence. History seq2seq is an approach to machine translation (or more generally, Finite-state transducer, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a special case of communication. This viewpoint was elaborated, for example, in the noisy channel model of machine translation. In practice, seq2seq maps an input sequence into a real-numerical vector by using a neural network (the ''encoder''), and then maps it back to an output sequence using another neural network (the ''decoder''). The idea of encoder-decoder sequence transduction had been developed in the early 20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE