LR(k)
In computer science, LR parsers are a type of bottom-up parser that analyse deterministic context-free languages in linear time. There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers, Minimal LR(1) parsers, and GLR parsers. LR parsers can be generated by a parser generator from a formal grammar defining the syntax of the language to be parsed. They are widely used for the processing of computer languages. An LR parser (Left-to-right, Rightmost derivation in reverse) reads input text from left to right without backing up (this is true for most parsers), and produces a rightmost derivation in reverse: it does a bottom-up parse – not a top-down LL parse or ad-hoc parse. The name LR is often followed by a numeric qualifier, as in LR(1) or sometimes LR(''k''). To avoid backtracking or guessing, the LR parser is allowed to peek ahead at ''k'' lookahead input symbols before deciding how to parse earlier symbols. Typically ''k'' is 1 and is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical LR Parser
In computer science, a canonical LR parser or LR(1) parser is an LR(k) parser for ''k=1'', i.e. with a single Parsing#Lookahead, lookahead terminal symbol, terminal. The special attribute of this parser is that any LR(k) grammar with ''k>1'' can be transformed into an LR(1) grammar. However, back-substitutions are required to reduce k and as back-substitutions increase, the grammar can quickly become large, repetitive and hard to understand. LR(k) can handle all deterministic context-free languages. In the past this LR(k) parser has been avoided because of its huge memory requirements in favor of less powerful alternatives such as the LALR and the LL(1) parser. Recently, however, a "minimal LR(1) parser" whose space requirements are close to LALR parsers, is being offered by several parser generators. Like most parsers, the LR(1) parser is automatically generated by compiler-compilers like GNU Bison, MSTA, Menhir, HYACC, LRSTAR. History In 1965 Donald Knuth invented the LR(k) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
LALR Parser
In computer science, an LALR parser or Look-Ahead LR parser is a simplified version of a canonical LR parser, to parse a text according to a set of production rules specified by a formal grammar for a computer language. ("LR" means left-to-right, rightmost derivation.) The LALR parser was invented by Frank DeRemer in his 1969 PhD dissertation, ''Practical Translators for LR(k) languages'', in his treatment of the practical difficulties at that time of implementing LR(1) parsers. He showed that the LALR parser has more language recognition power than the LR(0) parser, while requiring the same number of states as the LR(0) parser for a language that can be recognized by both parsers. This makes the LALR parser a memory-efficient alternative to the LR(1) parser for languages that are LALR. It was also proven that there exist LR(1) languages that are not LALR. Despite this weakness, the power of the LALR parser is sufficient for many mainstream computer languages,''LR Parsing: Theor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shift-reduce Parser
A shift-reduce parser is a class of efficient, table-driven bottom-up parsing methods for computer languages and other notations formally defined by a Formal grammar, grammar. The parsing methods most commonly used for parsing programming languages, LR parser, LR parsing and its variations, are shift-reduce methods. The simple precedence parser, precedence parsers used before the invention of LR parsing are also shift-reduce methods. All shift-reduce parsers have similar outward effects, in the incremental order in which they build a parse tree or call specific output actions. Overview A shift-reduce parser scans and parses the input text in one forward pass over the text, without backing up. The parser builds up the parse tree incrementally, bottom up, and left to right, without guessing or backtracking. At every point in this pass, the parser has accumulated a list of subtrees or phrases of the input text that have been already parsed. Those subtrees are not yet joined to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (including the design and implementation of hardware and software). Computer science is generally considered an area of academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GLR Parser
A GLR parser (GLR standing for "Generalized LR", where L stands for "left-to-right" and R stands for "rightmost (derivation)") is an extension of an LR parser algorithm to handle non-deterministic and ambiguous grammars. The theoretical foundation was provided in a 1974 paper by Bernard Lang (along with other general Context-Free parsers such as GLL). It describes a systematic way to produce such algorithms, and provides uniform results regarding correctness proofs, complexity with respect to grammar classes, and optimization techniques. The first actual implementation of GLR was described in a 1984 paper by Masaru Tomita, it has also been referred to as a "parallel parser". Tomita presented five stages in his original work, though in practice it is the second stage that is recognized as the GLR parser. Though the algorithm has evolved since its original forms, the principles have remained intact. As shown by an earlier publication, Lang was primarily interested in more easily us ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stack (abstract Data Type)
In computer science, a stack is an abstract data type that serves as a collection of elements, with two main operations: * Push, which adds an element to the collection, and * Pop, which removes the most recently added element that was not yet removed. Additionally, a peek operation can, without modifying the stack, return the value of the last element added. Calling this structure a ''stack'' is by analogy to a set of physical items stacked one atop another, such as a stack of plates. The order in which an element added to or removed from a stack is described as last in, first out, referred to by the acronym LIFO. As with a stack of physical objects, this structure makes it easy to take an item off the top of the stack, but accessing a datum deeper in the stack may require taking off multiple other items first. Considered as a linear data structure, or more abstractly a sequential collection, the push and pop operations occur only at one end of the structure, referred ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bottom-Up Parser
Bottom-up may refer to: * Bottom-up analysis, a fundamental analysis technique in accounting and finance * Bottom-up parsing, a computer science strategy * Bottom-up processing, in Pattern recognition (psychology) * Bottom-up theories of galaxy formation and evolution * Bottom-up tree automaton, in data structures * Bottom-up integration testing, in software testing * Top-down and bottom-up design, strategies of information processing and knowledge ordering * Bottom-up proteomics, a laboratory technique involving proteins * Bottom Up Records, a record label founded by Shyheim * Bottom-up approach of the Holocaust, a viewpoint on the causes of the Holocaust See also * Bottoms Up (other) * Top-down (other) * Capsizing, when a boat is turned upside down * Mundanity, an precursor of social movements * Social movements, bottom-up societal reform * Turtling (sailing) In dinghy sailing, a boat is said to be turtling or to turn turtle when the boat is fully in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Morgan Kaufmann
Morgan Kaufmann Publishers is a Burlington, Massachusetts (San Francisco, California until 2008) based publisher specializing in computer science and engineering content. Since 1984, Morgan Kaufmann has published content on information technology, computer architecture, data management, computer networking, computer systems, human computer interaction, computer graphics, multimedia information and systems, artificial intelligence, computer security, and software engineering. Morgan Kaufmann's audience includes the research and development communities, information technology (IS/IT) managers, and students in professional degree programs. The company was founded in 1984 by publishers Michael B. Morgan and William Kaufmann and computer scientist Nils Nilsson. It was held privately until 1998, when it was acquired by Harcourt General and became an imprint of the Academic Press, a subsidiary of Harcourt. Harcourt was acquired by Reed Elsevier in 2001; Morgan Kaufmann is now an impri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parse Tree
A parse tree or parsing tree or derivation tree or concrete syntax tree is an ordered, rooted tree that represents the syntactic structure of a string according to some context-free grammar. The term ''parse tree'' itself is used primarily in computational linguistics; in theoretical syntax, the term ''syntax tree'' is more common. Concrete syntax trees reflect the syntax of the input language, making them distinct from the abstract syntax trees used in computer programming. Unlike Reed-Kellogg sentence diagrams used for teaching grammar, parse trees do not use distinct symbol shapes for different types of constituents. Parse trees are usually constructed based on either the constituency relation of constituency grammars (phrase structure grammars) or the dependency relation of dependency grammars. Parse trees may be generated for sentences in natural languages (see natural language processing), as well as during processing of computer languages, such as programming languages. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
LL Parsing
In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence. An LL parser is called an LL(''k'') parser if it uses ''k'' tokens of lookahead when parsing a sentence. A grammar is called an LL(''k'') grammar if an LL(''k'') parser can be constructed from it. A formal language is called an LL(''k'') language if it has an LL(''k'') grammar. The set of LL(''k'') languages is properly contained in that of LL(''k''+1) languages, for each ''k'' ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(''k'') parser. An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the grammar in linear time. Two nomenclative outlier parser typ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Operator-precedence Parser
In computer science, an operator precedence parser is a bottom-up parser that interprets an operator-precedence grammar. For example, most calculators use operator precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN). Edsger Dijkstra's shunting yard algorithm is commonly used to implement operator precedence parsers. Relationship to other parsers An operator-precedence parser is a simple shift-reduce parser that is capable of parsing a subset of LR(1) grammars. More precisely, the operator-precedence parser can parse all LR(1) grammars where two consecutive nonterminals and epsilon never appear in the right-hand side of any rule. Operator-precedence parsers are not used often in practice; however they do have some properties that make them useful within a larger design. First, they are simple enough to write by hand, which is not generally ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |