HOME





Kan–Quillen Model Structure
In higher category theory, the Kan–Quillen model structure is a special model structure on the category of simplicial sets. It consists of three classes of morphisms between simplicial sets called ''fibrations'', ''cofibrations'' and ''weak equivalences'', which fulfill the properties of a model structure. Its fibrant objects are all Kan complexes and it furthermore models the homotopy theory of CW complexes up to weak homotopy equivalence, with the correspondence between simplicial sets, Kan complexes and CW complexes being given by the geometric realization and the singular functor ( Milnor's theorem). The Kan–Quillen model structure is named after Daniel Kan and Daniel Quillen. Definition The Kan–Quillen model structure is given by: * Fibrations are Kan fibrations.Joyal 2008, Theorem 6.1. on p. 293 * Cofibrations are monomorphisms.Cisinski 2019, Theorem 3.1.8. * Weak equivalences are ''weak homotopy equivalences'', hence morphisms between simplicial sets, whose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higher Category Theory
In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit morphism, arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic Invariant (mathematics), invariants of topological space, spaces, such as the Fundamental groupoid, fundamental . In higher category theory, the concept of higher categorical structures, such as (), allows for a more robust treatment of homotopy theory, enabling one to capture finer homotopical distinctions, such as differentiating two topological spaces that have the same fundamental group but differ in their higher homotopy groups. This approach is particularly valuable when dealing with spaces with intricate topological features, such as the Eilenberg-MacLane space. Strict higher categories An ordinary category (m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pullback (category Theory)
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit (category theory), limit of a diagram (category theory), diagram consisting of two morphisms and with a common codomain. The pullback is written :. Usually the morphisms and are omitted from the notation, and then the pullback is written :. The pullback comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative diagram, commutative square. The Dual (category theory), dual concept of the pullback is the ''Pushout ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higher Category Theory
In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit morphism, arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic Invariant (mathematics), invariants of topological space, spaces, such as the Fundamental groupoid, fundamental . In higher category theory, the concept of higher categorical structures, such as (), allows for a more robust treatment of homotopy theory, enabling one to capture finer homotopical distinctions, such as differentiating two topological spaces that have the same fundamental group but differ in their higher homotopy groups. This approach is particularly valuable when dealing with spaces with intricate topological features, such as the Eilenberg-MacLane space. Strict higher categories An ordinary category (m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NLab
The ''n''Lab is a wiki for research-level notes, expositions and collaborative work, including original research, in mathematics, physics, and philosophy, with a focus on methods from type theory, category theory, and homotopy theory. The ''n''Lab espouses the "''n''-point of view" (a deliberate pun on Wikipedia's "neutral point of view") that type theory, homotopy theory, category theory, and higher category theory provide a useful unifying viewpoint for mathematics, physics and philosophy. The ''n'' in ''n''-point of view could refer to either ''n''-categories as found in higher category theory, ''n''-groupoids as found in both homotopy theory and higher category theory, or ''n''-types as found in homotopy type theory. Overview The ''n''Lab was originally conceived to provide a repository for ideas (and even new research) generated in the comments on posts at the ''n''-Category Café, a group blog run (at the time) by John C. Baez, David Corfield and Urs Schreiber. Eventua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, '' The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer Nature
Springer Nature or the Springer Nature Group is a German-British academic publishing company created by the May 2015 merger of Springer Science+Business Media and Holtzbrinck Publishing Group's Nature Publishing Group, Palgrave Macmillan, and Macmillan Education. History The company originates from several journals and publishing houses, notably Springer-Verlag, which was founded in 1842 by Julius Springer in Berlin (the grandfather of Bernhard Springer who founded Springer Publishing in 1950 in New York), Nature Portfolio, Nature Publishing Group which has published ''Nature (journal) , Nature'' since 1869, and Macmillan Education, which goes back to Macmillan Publishers founded in 1843. Springer Nature was formed in 2015 by the merger of Nature Publishing Group, Palgrave Macmillan, and Macmillan Education (held by Holtzbrinck Publishing Group) with Springer Science+Business Media (held by BC Partners). Plans for the merger were first announced on 15 January 2015. The transactio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Co- And Contravariant Model Structure
In higher category theory in mathematics, co- and contravariant model structures are special model structures on slice categories of the category of simplicial sets. On them, postcomposition and pullbacks (due to its application in algebraic geometry also known as base change) induce adjoint functors, which with the model structures can even become Quillen adjunctions. Definition Let A be a simplicial set, then there is a slice category \mathbf/A. With the choice of a model structure on \mathbf, for example the Joyal or Kan–Quillen model structure, it induces a model structure on \mathbf/A. * ''Covariant cofibrations'' are monomorphisms. ''Covariant fibrant objects'' are the left fibrant objects over A. ''Covariant fibrations'' between two such left fibrant objects over A are exactly the left fibrations. * ''Contravariant cofibrations'' are monomorphisms. ''Contravariant fibrant objects'' are the right fibrant objects over A. ''Contravariant fibrations'' between two such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ex∞ Functor
In higher category theory in mathematics, the extension of simplicial sets (extension functor or Ex functor) is an endofunctor on the category of simplicial sets. Due to many remarkable properties, the extension functor has plenty and strong applications in homotopical algebra. Among the most well-known is its application in the construction of Kan complexes from arbitrary simplicial sets, which often enables without loss of generality to take the former for proofs about the latter. It is furthermore very well compatible with the Kan–Quillen model structure and can for example be used to explicitly state its factorizations or to search for weak homotopy equivalences. Definition Using the subdivision of simplicial sets, the extension of simplicial sets is defined as:Guillou, Definition 6 : \operatorname\colon \mathbf\rightarrow\mathbf, \operatorname(Y)_n :=\operatorname(\operatorname(\Delta^n),Y). Due to the Yoneda lemma, one also has \operatorname(Y)_n \cong\operatorname( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quillen Adjunction
In homotopy theory, a branch of mathematics, a Quillen adjunction between two closed model categories C and D is a special kind of adjunction between categories that induces an adjunction between the homotopy categories Ho(C) and Ho(D) via the total derived functor construction. Quillen adjunctions are named in honor of the mathematician Daniel Quillen. Formal definition Given two closed model categories C and D, a Quillen adjunction is a pair :(''F'', ''G''): C \leftrightarrows D of adjoint functors with ''F'' left adjoint to ''G'' such that ''F'' preserves cofibrations and trivial cofibrations or, equivalently by the closed model axioms, such that ''G'' preserves fibrations and trivial fibrations. In such an adjunction ''F'' is called the left Quillen functor and ''G'' is called the right Quillen functor. Properties It is a consequence of the axioms that a left (right) Quillen functor preserves weak equivalences between cofibrant (fibrant) objects. The total derived funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Identity Functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F(Y) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]