Co- And Contravariant Model Structure
   HOME





Co- And Contravariant Model Structure
In higher category theory in mathematics, co- and contravariant model structures are special model structures on slice categories of the category of simplicial sets. On them, postcomposition and pullbacks (due to its application in algebraic geometry also known as base change) induce adjoint functors, which with the model structures can even become Quillen adjunctions. Definition Let A be a simplicial set, then there is a slice category \mathbf/A. With the choice of a model structure on \mathbf, for example the Joyal or Kan–Quillen model structure, it induces a model structure on \mathbf/A. * ''Covariant cofibrations'' are monomorphisms. ''Covariant fibrant objects'' are the left fibrant objects over A. ''Covariant fibrations'' between two such left fibrant objects over A are exactly the left fibrations. * ''Contravariant cofibrations'' are monomorphisms. ''Contravariant fibrant objects'' are the right fibrant objects over A. ''Contravariant fibrations'' between two such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higher Category Theory
In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit morphism, arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic Invariant (mathematics), invariants of topological space, spaces, such as the Fundamental groupoid, fundamental . In higher category theory, the concept of higher categorical structures, such as (), allows for a more robust treatment of homotopy theory, enabling one to capture finer homotopical distinctions, such as differentiating two topological spaces that have the same fundamental group but differ in their higher homotopy groups. This approach is particularly valuable when dealing with spaces with intricate topological features, such as the Eilenberg-MacLane space. Strict higher categories An ordinary category (m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Category
In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any model category and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra. The naive homotopy category The category of topological spaces Top has topological spaces as objects and as morphisms the continuous maps between them. The older definition of the homotopy category hTop, called the naive homotopy category for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps ''f'' : ''X'' → ''Y'' are considered the same in the na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, '' The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functor Category
In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object in the category). Functor categories are of interest for two main reasons: * many commonly occurring categories are (disguised) functor categories, so any statement proved for general functor categories is widely applicable; * every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer properties than the original category, allowing certain operations that were not available in the original setting. Definition Suppose C is a small category (i.e. the objects and morphisms form a set rather than a proper class) and D is an arbitrary category. The category of functors from C to D, written as Fun(C, D), Funct(C,D), ,D/math>, or D ^C, has as objects the covariant functors from C to D, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Injective And Projective Model Structure
In higher category theory in mathematics, injective and projective model structures are special model structures on functor categories into a model category. Both model structures ''do not have'' to exist, but there are conditions guaranteeing their existence. An important application is for the study of limits and colimits, which are functors from a functor category and can therefore be made into Quillen adjunctions. Definition Let \mathcal be a small category and \mathcal be a model category. For two functors F,G\colon \mathcal\rightarrow\mathcal, a natural transformation \eta\colon F\Rightarrow G is composed of morphisms \eta_X\colon FX\rightarrow GX in \operatorname\mathcal for all objects X in \operatorname\mathcal. For those it hence be studied if they are fibrations, cofibrations and weak equivalences, which might lead to a model structure on the functor category \operatorname(\mathcal,\mathcal). * ''Injective cofibrations'' and ''injective weak equivalences'' are the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence Of Categories
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation. If a category is equivalent to the dual (category theory), opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent. An equivalence of categories consists of a functor betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derived Functor
In mathematics, certain functors may be ''derived'' to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Motivation It was noted in various quite different settings that a short exact sequence often gives rise to a "long exact sequence". The concept of derived functors explains and clarifies many of these observations. Suppose we are given a covariant left exact functor ''F'' : A → B between two abelian categories A and B. If 0 → ''A'' → ''B'' → ''C'' → 0 is a short exact sequence in A, then applying ''F'' yields the exact sequence 0 → ''F''(''A'') → ''F''(''B'') → ''F''(''C'') and one could ask how to continue this sequence to the right to form a long exact sequence. Strictly speaking, this question is ill-posed, since there are always numerous different ways to continue a given exact sequence to the right. But it turns out that (if A is "nice" enough) t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quillen Equivalence
In homotopy theory, a branch of mathematics, a Quillen adjunction between two closed model categories C and D is a special kind of adjunction between categories that induces an adjunction between the homotopy categories Ho(C) and Ho(D) via the total derived functor construction. Quillen adjunctions are named in honor of the mathematician Daniel Quillen. Formal definition Given two closed model categories C and D, a Quillen adjunction is a pair :(''F'', ''G''): C \leftrightarrows D of adjoint functors with ''F'' left adjoint to ''G'' such that ''F'' preserves cofibrations and trivial cofibrations or, equivalently by the closed model axioms, such that ''G'' preserves fibrations and trivial fibrations. In such an adjunction ''F'' is called the left Quillen functor and ''G'' is called the right Quillen functor. Properties It is a consequence of the axioms that a left (right) Quillen functor preserves weak equivalences between cofibrant (fibrant) objects. The total derived functor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Terminal Object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): is terminal if for every object in there exists exactly one morphism . Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object. A pointed category is one with a zero object. A strict initial object is one for which every morphism into is an isomorphism. Examples * The empty set is the unique initial object in Set, the category of sets. Every one-element set ( singleton) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weak Homotopy Equivalence
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category. A model category is a category with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated homotopy category of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms. It is a useful observation that the associated homotopy category depends only on the weak equivalences, not on the fibrations and cofibrations. Topological spaces Model categories were defined by Quillen as an axiomatization of homotopy theory that applies to topological spaces, but also to many other categories in algebra and geometry. The example that started the subject is the category of topological spaces with Serre fibrations as fibrations and weak homotopy equivalences as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Left Proper Model Structure
In higher category theory in mathematics, a proper model structure is a model structure in which additionally weak equivalences are preserved under pullback (fiber product) along fibrations, called ''right proper'', and pushouts (cofiber product) along cofibrations, called ''left proper''. It is helpful to construct weak equivalences and hence to find isomorphic objects in the homotopy theory of the model structure. Definition For every model category, one has: * Pushouts of weak equivalences between cofibrant objects along cofibrations are again weak equivalences. * Pullbacks of weak equivalences between fibrant objects along fibrations are again weak equivalences. A model category is then called: * ''left proper'', if pushouts of weak equivalences along cofibrations are again weak equivalences. * ''right proper'', if pullbacks of weak equivalences along fibrations are again weak equivalences. * ''proper'', if it is both left proper and right proper. Properties * A mode ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]