HOME
*





Impedance Of Free Space
The impedance of free space, , is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, , where is the electric field strength and is the magnetic field strength. Its presently accepted value is :. Where Ω is the ohm, the SI unit of electrical resistance. The impedance of free space (that is the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability and the speed of light in vacuum . Before 2019, the values of both these constants were taken to be exact (they were given in the definitions of the ampere and the metre respectively), and the value of the impedance of free space was therefore likewise taken to be exact. However, with the redefinition of the SI base units that came into force on 20 May 2019, the impedance of free space is subject to experimental measurement because only the speed of light in vacuum retains an exactly defined valu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Constant
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is contrasted with a mathematical constant, which has a fixed numerical value, but does not directly involve any physical measurement. There are many physical constants in science, some of the most widely recognized being the speed of light in a vacuum ''c'', the gravitational constant ''G'', the Planck constant ''h'', the electric constant ''ε''0, and the elementary charge ''e''. Physical constants can take many dimensional forms: the speed of light signifies a maximum speed for any object and its dimension is length divided by time; while the fine-structure constant ''α'', which characterizes the strength of the electromagnetic interaction, is dimensionless. The term ''fundamental physical constant'' is sometimes used to refer to universal-but-dimensioned physical constan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetic Constant
The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum''), also known as the magnetic constant, is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally written as ''μ''0 (pronounced "mu nought" or "mu zero"). Its purpose is to quantify the strength of the magnetic field emitted by an electric current. Expressed in terms of SI base units, it has the unit kg⋅m⋅s−2·A−2. Since the redefinition of SI units in 2019 (when the values of ''e'' and ''h'' were fixed as defined quantities), ''μ''0 is an experimentally determined constant, its value being proportional to the dimensionless fine-structure constant, which is known to a relative uncertainty of about , with no other dependencies with experimental uncertainty. Its value in SI units as recommended by CODATA 2018 (published in May 2019) is: From 1948 to 2019, ''μ''0 had a defined value (per the former ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sinusoidal Plane-wave Solutions Of The Electromagnetic Wave Equation
Sinusoidal plane-wave solutions are particular solutions to the electromagnetic wave equation. The general solution of the electromagnetic wave equation in homogeneous, linear, time-independent media can be written as a linear superposition of plane-waves of different frequencies and polarizations. The treatment in this article is classical but, because of the generality of Maxwell's equations for electrodynamics, the treatment can be converted into the quantum mechanical treatment with only a reinterpretation of classical quantities (aside from the quantum mechanical treatment needed for charge and current densities). The reinterpretation is based on the theories of Max Planck and the interpretations by Albert Einstein of those theories and of other experiments. The quantum generalization of the classical treatment can be found in the articles on photon polarization and photon dynamics in the double-slit experiment. Explanation Experimentally, every light signal can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Near And Far Field
The near field and far field are regions of the electromagnetic (EM) field around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative ''near-field'' behaviors dominate close to the antenna or scattering object, while electromagnetic radiation ''far-field'' behaviors dominate at greater distances. Far-field E (electric) and B (magnetic) field strength decreases as the distance from the source increases, resulting in an inverse-square law for the radiated ''power'' intensity of electromagnetic radiation. By contrast, near-field E and B strength decrease more rapidly with distance: the radiative field decreases by the inverse-distance squared, the reactive field by an inverse-cube law, resulting in a diminished power in the parts of the electric field by an inverse fourth-power and sixth-power, respectively. The rapid drop in power contained in the near-field ensures that effects due to the near-field essentially vanish a f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mathematical Descriptions Of The Electromagnetic Field
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking. Vector field approach The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as (electric field) and (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Wave Equation
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field or the magnetic field , takes the form: \begin \left(v_^2\nabla^2 - \frac \right) \mathbf &= \mathbf \\ \left(v_^2\nabla^2 - \frac \right) \mathbf &= \mathbf \end where v_ = \frac is the speed of light (i.e. phase velocity) in a medium with permeability , and permittivity , and is the Laplace operator. In a vacuum, , a fundamental physical constant. The electromagnetic wave equation derives from Maxwell's equations. In most older literature, is called the ''magnetic flux density'' or ''magnetic induction''. The following equations\begin \nabla \cdot \mathbf &= 0\\ \nabla \cdot \mathbf &= 0 \endpredicate that any electromagnetic wave must be a transverse wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dimensional Analysis
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measure (such as miles vs. kilometres, or pounds vs. kilograms) and tracking these dimensions as calculations or comparisons are performed. The conversion of units from one dimensional unit to another is often easier within the metric or the SI than in others, due to the regular 10-base in all units. ''Commensurable'' physical quantities are of the same kind and have the same dimension, and can be directly compared to each other, even if they are expressed in differing units of measure, e.g. yards and metres, pounds (mass) and kilograms, seconds and years. ''Incommensurable'' physical quantities are of different kinds and have different dimensions, and can not be directly compared to each other, no matter what units they are expressed in, e.g. metres and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hertzian Dipole
In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast telev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radiation Resistance
Radiation resistance, \ R_\mathsf\ or \ R_\mathsf\ , is proportional to the part of an antenna's feedpoint electrical resistance that is caused by power loss from the emission of radio waves from the antenna. Radiation resistance is an ''effective'' resistance, due to the power carried away from the antenna as radio waves. Unlike conventional resistance or " Ohmic resistance", radiation resistance is ''not'' due to the opposition to current ( resistivity) of the imperfect conducting materials the antenna is made of. The radiation resistance (\ R_\mathsf\ ) is conventionally defined as the value of loss resistance that ''would'' dissipate the same amount of power as heat, as is dissipated by the radio waves emitted from the antenna, when fed at a minimum-voltage / maximum-current point ("voltage node"). From Joule's law, it is equal to the total power \ P_\mathsf\ radiated as radio waves by the antenna, divided by the square of the current \ I_\mathsf\ into the antenna termi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Henry (unit)
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self inductance of 1 henry.‌ The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same time as Michael Faraday (1791–1867) in England. Definition The inductance of an electric circuit is one henry when an electric current that is changing at one ampere per second results in an electromotive force of one volt across the inductor: :\displaystyle V(t)= L \frac, where ''V''(''t'') denotes the resulting voltage across the circuit, ''I''(''t'') is the current through the circuit, and ''L'' is the inductance of the circuit. The henry is a derived unit based on four of the seven base units of the International System of Units: kilogram (kg), metre (m), second (s), and ampere (A). Expre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ISO 31
ISO 31 ( Quantities and units, International Organization for Standardization, 1992) is a superseded international standard concerning physical quantities, units of measurement, their interrrelationships and their presentation. It was revised and replaced by ISO/IEC 80000. Parts The standard comes in 14 parts: *ISO 31-0: General principles (replaced by ISO/IEC 80000-1:2009) * ISO 31-1: Space and time (replaced by ISO/IEC 80000-3:2007) * ISO 31-2: Periodic and related phenomena (replaced by ISO/IEC 80000-3:2007) * ISO 31-3: Mechanics (replaced by ISO/IEC 80000-4:2006) *ISO 31-4: Heat (replaced by ISO/IEC 80000-5) *ISO 31-5: Electricity and magnetism (replaced by ISO/IEC 80000-6) * ISO 31-6: Light and related electromagnetic radiations (replaced by ISO/IEC 80000-7) *ISO 31-7: Acoustics (replaced by ISO/IEC 80000-8:2007) *ISO 31-8: Physical chemistry and molecular physics (replaced by ISO/IEC 80000-9) * ISO 31-9: Atomic and nuclear physics (replaced by ISO/IEC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

BIPM
The International Bureau of Weights and Measures (french: Bureau international des poids et mesures, BIPM) is an intergovernmental organisation, through which its 59 member-states act together on measurement standards in four areas: chemistry, ionising radiation, physical metrology, and coordinated universal time. It is based in Saint-Cloud, Paris, France. The organisation has been referred to as IBWM (from its name in English) in older literature. Structure The BIPM is supervised by the International Committee for Weights and Measures (french: Comité international des poids et mesures, CIPM), a committee of eighteen members that meet normally in two sessions per year, which is in turn overseen by the General Conference on Weights and Measures (french: Conférence générale des poids et mesures, CGPM) that meets in Paris usually once every four years, consisting of delegates of the governments of the Member States and observers from the Associates of the CGPM. These or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]