Internalization (category Theory)
   HOME





Internalization (category Theory)
In mathematics, more specifically in category theory, internal categories are a generalisation of the notion of small category, and are defined with respect to a fixed ambient category. If the ambient category is taken to be the category of sets then one recovers the theory of small categories. In general, internal categories consist of a pair of objects in the ambient category—thought of as the 'object of objects' and 'object of morphisms'—together with a collection of morphisms in the ambient category satisfying certain identities. Group objects, are common examples of internal categories. There are notions of internal functors and natural transformations that make the collection of internal categories in a fixed category into a 2-category. Definitions Let C be a category with Pullback (category theory), pullbacks. An internal category in C consists of the following data: two C-objects C_0,C_1 named "object of objects" and "object of morphisms" respectively and four C-arrows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Small Category
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ambient Category
Ambient or ambiance or ambience may refer to: Arts and entertainment * ''Ambiancé'', an unreleased experimental film * ''Ambient'' (novel), a novel by Jack Womack Music and sound * Ambience (sound recording), also known as atmospheres or backgrounds * Ambient music, a genre of music that puts an emphasis on tone and atmosphere * ''Ambient'' (album), by Moby * ''Ambience'' (album), by the Lambrettas * Virgin Ambient series, a series of 24 albums released on the UK Virgin Records label between 1993 and 1997 *''Ambient 1–4'', a set of four albums by Brian Eno, released by Obscure Records between 1978 and 1982 * Stingray ''Ambiance'', the channel "Ambiance" on the Singray music service Other * Ambient (computation), a process calculus * Ambient (desktop environment), a MUI-based desktop environment for MorphOS * Mark Ambient Harold Harley (20 June 1860 – 11 August 1937), known by his pen name Mark Ambient, was an English actor and dramatist. He is particularly noted as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Sets
In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of morphisms is the composition of functions. Many other categories (such as the category of groups, with group homomorphisms as arrows) add structure to the objects of the category of sets or restrict the arrows to functions of a particular kind (or both). Properties of the category of sets The axioms of a category are satisfied by Set because composition of functions is associative, and because every set ''X'' has an identity function id''X'' : ''X'' → ''X'' which serves as identity element for function composition. The epimorphisms in Set are the surjective maps, the monomorphisms are the injective maps, and the isomorphisms are the bijective maps. The empty set serves as the initial object in Set with empty functions as morph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Object
In category theory, a branch of mathematics, group objects are certain generalizations of group (mathematics), groups that are built on more complicated structures than Set (mathematics), sets. A typical example of a group object is a topological group, a group whose underlying set is a topological space such that the group operations are continuity (topology), continuous. Definition Formally, we start with a category (mathematics), category ''C'' with finite products (i.e. ''C'' has a terminal object 1 and any two objects of ''C'' have a product (category theory), product). A group object in ''C'' is an object ''G'' of ''C'' together with morphisms *''m'' : ''G'' × ''G'' → ''G'' (thought of as the "group multiplication") *''e'' : 1 → ''G'' (thought of as the "inclusion of the identity element") *''inv'' : ''G'' → ''G'' (thought of as the "inversion operation") such that the following properties (modeled on the group axioms – more precisely, on the Universal algebra#G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D (both from C to D), then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




2-category
In category theory in mathematics, a 2-category is a category with "morphisms between morphisms", called 2-morphisms. A basic example is the category Cat of all (small) categories, where a 2-morphism is a natural transformation between functors. The concept of a strict 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of bicategory (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1967 by Jean Bénabou. A (2, 1)-category is a 2-category where each 2-morphism is invertible. Definitions A strict 2-category By definition, a strict 2-category ''C'' consists of the data: * a class of 0-''cells'', * for each pairs of 0-cells a, b, a set \operatorname(a, b) called the set of 1-''cells'' from a to b, * for each pairs of 1-cells f, g in the same hom-set, a set \operatorname(f, g) called the set of 2-''cells'' from f to g, * ''ordinary compo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pullback (category Theory)
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit (category theory), limit of a diagram (category theory), diagram consisting of two morphisms and with a common codomain. The pullback is written :. Usually the morphisms and are omitted from the notation, and then the pullback is written :. The pullback comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative diagram, commutative square. The Dual (category theory), dual concept of the pullback is the ''Pushout ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enriched Category
In category theory, a branch of mathematics, an enriched category generalizes the idea of a category (mathematics), category by replacing hom-sets with objects from a general monoidal category. It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an object (category theory), object in some fixed monoidal category of "hom-objects". In order to emulate the (associative) composition of morphisms in an ordinary category, the hom-category must have a means of composing hom-objects in an associative manner: that is, there must be a binary operation on objects giving us at least the structure of a monoidal category, though in some contexts the operation may also need to be commutative and perhaps also to ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Double Category
In mathematics, especially category theory, a double category is a generalization of a category where instead of morphisms, we have vertical morphisms, horizontal morphisms and 2-morphisms. Introduced by Ehresmann in 1960s, the notion may be compared with that of a bicategory; namely, the notion of a bicategory is obtained by enrichment, while the notion of a double category is obtained by internalization. Precisely, a double category is a category internal Internal may refer to: *Internality as a concept in behavioural economics *Neijia, internal styles of Chinese martial arts *Neigong or "internal skills", a type of exercise in meditation associated with Daoism * ''Internal'' (album) by Safia, 2016 ... to Cat (roughly meaning a category object). Just as iterating the process of obtaining the notion of a 2-category leads to that of an ''n''-category, iterating the process for a double category leads to that of an ''n''-fold category. Footnotes References * * Further r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]