History Of Logarithms
   HOME
*



picture info

History Of Logarithms
The history of logarithms is the story of a correspondence (in modern terms, a group isomorphism) between multiplication on the positive real numbers and addition on the real number line that was formalized in seventeenth century Europe and was widely used to simplify calculation until the advent of the digital computer. The Napierian logarithms were published first in 1614. E. W. Hobson called it "one of the very greatest scientific discoveries that the world has seen." Henry Briggs introduced common (base 10) logarithms, which were easier to use. Tables of logarithms were published in many forms over four centuries. The idea of logarithms was also used to construct the slide rule, which became ubiquitous in science and engineering until the 1970s. A breakthrough generating the natural logarithm was the result of a search for an expression of area against a rectangular hyperbola, and required the assimilation of a new function into standard mathematics. Napier's wonder ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mirifici Logarithmorum Canonis Descriptio
''Mirifici Logarithmorum Canonis Descriptio'' (Description of the Wonderful Canon of Logarithms, 1614) and ''Mirifici Logarithmorum Canonis Constructio'' (Construction of the Wonderful Canon of Logarithms, 1619) are two books in Latin by John Napier expounding the method of logarithms. While others had approached the idea of logarithms, notably Jost Bürgi, it was Napier who first published the concept, along with easily used precomputed tables, in his ''Mirifici Logarithmorum Canonis Descriptio.'' Prior to the introduction of logarithms, high accuracy numerical calculations involving multiplication, division and root extraction were laborious and error prone. Logarithms greatly simplify such calculations. As Napier put it: “…nothing is more tedious, fellow mathematicians, in the practice of the mathematical arts, than the great delays suffered in the tedium of lengthy multiplications and divisions, the finding of ratios, and in the extraction of square and cube roots… ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Trigonometry
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation. The origins of spherical trigonometry in Greek mathematics and the major developments in Islamic mathematics are discussed fully in History of trigonometry and Mathematics in medieval Islam. The subject came to fruition in Early Modern times with important developments by John Napier, Delambre and others, and attained an essentially complete form by the end of the nineteenth century with the publication of Todhunter's textbook ''Spherical trigonometry for the use of colleges and Schools''. Since then, significant developments have been the application of vector methods, quaternion methods, and the use of numerical methods. P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arithmetic Progression
An arithmetic progression or arithmetic sequence () is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a and the common difference of successive members is d, then the n-th term of the sequence (a_n) is given by: :a_n = a + (n - 1)d, If there are ''m'' terms in the AP, then a_m represents the last term which is given by: :a_m = a + (m - 1)d. A finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression. The sum of a finite arithmetic progression is called an arithmetic series. Sum Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Progression
In mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the ''common ratio''. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with common ratio 1/2. Examples of a geometric sequence are powers ''r''''k'' of a fixed non-zero number ''r'', such as 2''k'' and 3''k''. The general form of a geometric sequence is :a,\ ar,\ ar^2,\ ar^3,\ ar^4,\ \ldots where ''r'' ≠ 0 is the common ratio and ''a'' ≠ 0 is a scale factor, equal to the sequence's start value. The sum of a geometric progression terms is called a '' geometric series''. Elementary properties The ''n''-th term of a geometric sequence with initial value ''a'' = ''a''1 and common ratio ''r'' is given by :a_n = a\,r^, and in general :a_n = a_m\,r^. Such a geometri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Journal Of Physics
The ''American Journal of Physics'' is a monthly, peer-reviewed scientific journal published by the American Association of Physics Teachers and the American Institute of Physics. The editor-in-chief is Beth Parks of Colgate University."Current Frequency: Monthly, 2002; and Former Frequency varies, 1940-2001" Confirmation of Editor, ISSN, CODEN, and other relevant information. Aims and scope The focus of this journal is undergraduate and graduate level physics. The intended audience is college and university physics teachers and students. Coverage includes current research in physics, instructional laboratory equipment, laboratory demonstrations, teaching methodologies, lists of resources, and book reviews. In addition, historical, philosophical and cultural aspects of physics are also covered. According to the 2021 Journal Citation Reports from Clarivate, this journal has a 2020 impact factor of 1.022. History The former title of this journal was ''American Physics Teache ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time,* * * * * * * * * * Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Heath, Thomas L. 1897. ''Works of Archimedes''. Archimedes' other mathematical achievements include deriving an approximation of pi, defining ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Sand Reckoner
''The Sand Reckoner'' ( el, Ψαμμίτης, ''Psammites'') is a work by Archimedes, an Ancient Greek mathematician of the 3rd century BC, in which he set out to determine an upper bound for the number of grains of sand that fit into the universe. In order to do this, he had to estimate the size of the universe according to the contemporary model, and invent a way to talk about extremely large numbers. The work, also known in Latin as ''Archimedis Syracusani Arenarius & Dimensio Circuli'', which is about eight pages long in translation, is addressed to the Syracusan king Gelo II (son of Hiero II), and is probably the most accessible work of Archimedes; in some sense, it is the first research-expository paper.Archimedes, The Sand Reckoner 511 R U, by Ilan Vardi
accessed 28-II-2007.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Myriad
A myriad (from Ancient Greek grc, μυριάς, translit=myrias, label=none) is technically the number 10,000 (ten thousand); in that sense, the term is used in English almost exclusively for literal translations from Greek, Latin or Sinospheric languages ( Chinese, Japanese, Korean, and Vietnam), or when talking about ancient Greek numerals. More generally, a myriad may be used in colloquial vernaculars to imply an indefinitely large number. History The Aegean numerals of the Minoan and Mycenaean civilizations included a single unit to denote tens of thousands. It was written with a symbol composed of a circle with four dashes . In Classical Greek numerals, a myriad was written as a capital mu: Μ, as lower case letters did not exist in Ancient Greece. To distinguish this numeral from letters, it was sometimes given an overbar: . Multiples were written above this sign, so that for example would equal 4,582×10,000 or 45,820,000. The etymology of the word ''myriad'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Base (exponentiation)
In exponentiation, the base is the number b in an expression of the form bn. Related terms The number n is called the exponent and the expression is known formally as exponentiation of b by n or the exponential of n with base b. It is more commonly expressed as "the nth power of b", "b to the nth power" or "b to the power n". For example, the fourth power of 10 is 10,000 because . The term ''power'' strictly refers to the entire expression, but is sometimes used to refer to the exponent. Radix is the traditional term for ''base'', but usually refers then to one of the common bases: decimal (10), binary (2), hexadecimal (16), or sexagesimal (60). When the concepts of variable and constant came to be distinguished, the process of exponentiation was seen to transcend the algebraic functions. In his 1748 ''Introductio in analysin infinitorum'', Leonhard Euler referred to "base a = 10" in an example. He referred to ''a'' as a "constant number" in an extensive consideration of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Briggs - Canon Logarithmorum Pro Numeris Serie Naturali Crescentibus Ab 1
Briggs may refer to: People * Briggs (surname) * Briggs (rapper), Australian rapper Places ;In the United States * Briggs, Nebraska, an unincorporated community * Briggs, Ohio * Briggs, Oklahoma * Briggs, Texas * Briggs, Virginia * Briggs Lake, a lake in Minnesota ;Elsewhere * Briggs Islet, Tasmania, Australia * Briggs Township, Ontario, Canada ;In space * Briggs (crater), a lunar crater * 4209 Briggs, an asteroid discovered in 1986 Other uses * Briggs & Stratton, a manufacturer of air-cooled gasoline engines * ''Briggs v. Elliott'', one of the school segregation cases consolidated with ''Brown v. Board of Education'' * Briggs Automotive Company or BAC, a car manufacturing company * Briggs Initiative, either of two pieces of Californian legislation sponsored by John Briggs * Briggs Manufacturing Company, manufacturer of car bodies for Ford and Chrysler * The Briggs, a punk rock band * Myers–Briggs Type Indicator In personality typology, the Myers–Briggs Type Indi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edward Wright (mathematician)
Edward Wright (baptised 8 October 1561; died November 1615) was an English mathematician and cartographer noted for his book ''Certaine Errors in Navigation'' (1599; 2nd ed., 1610), which for the first time explained the mathematical basis of the Mercator projection by building on the works of Pedro Nunes, and set out a reference table giving the linear scale multiplication factor as a function of latitude, calculated for each minute of arc up to a latitude of 75°. This was in fact a table of values of the integral of the secant function, and was the essential step needed to make practical both the making and the navigational use of Mercator charts. Wright was born at Garveston in Norfolk and educated at Gonville and Caius College, Cambridge, where he became a fellow from 1587 to 1596. In 1589 the College granted him leave after Elizabeth I requested that he carry out navigational studies with a raiding expedition organised by the Earl of Cumberland to the Azores to capture ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Johannes Kepler
Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of planetary motion, and his books '' Astronomia nova'', '' Harmonice Mundi'', and '' Epitome Astronomiae Copernicanae''. These works also provided one of the foundations for Newton's theory of universal gravitation. Kepler was a mathematics teacher at a seminary school in Graz, where he became an associate of Prince Hans Ulrich von Eggenberg. Later he became an assistant to the astronomer Tycho Brahe in Prague, and eventually the imperial mathematician to Emperor Rudolf II and his two successors Matthias and Ferdinand II. He also taught mathematics in Linz, and was an adviser to General Wallenstein. Additionally, he did fundamental work in the field of optics, invented an improved version of the refracting (or Keplerian) telescop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]