HOME





Howson Property
In the mathematical subject of group theory, the Howson property, also known as the finitely generated intersection property (FGIP), is the property of a group saying that the intersection of any two finitely generated subgroups of this group is again finitely generated. The property is named after Albert G. Howson Albert Geoffrey Howson (1931 – 1 November 2022) was a British mathematician and educationist. He started to work as algebraist and in 1954 published the Howson property of groups and proved it for some types of groups. Later he devoted himsel ... who in a 1954 paper established that free groups have this property. Formal definition A group (mathematics), group G is said to have the Howson property if for every finitely generated group, finitely generated subgroups H,K of G their intersection H\cap K is again a finitely generated subgroup of G. Examples and non-examples *Every finite group has the Howson property. *The group G=F(a,b)\times \mathbb Z does not ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Group
In mathematics, specifically group theory, a subgroup series of a group G is a chain of subgroups: :1 = A_0 \leq A_1 \leq \cdots \leq A_n = G where 1 is the trivial subgroup. Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups. A subgroup series is used in the subgroup method. Subgroup series are a special example of the use of filtrations in abstract algebra. Definition Normal series, subnormal series A subnormal series (also normal series, normal tower, subinvariant series, or just series) of a group ''G'' is a sequence of subgroups, each a normal subgroup of the next one. In a standard notation :1 = A_0\triangleleft A_1\triangleleft \cdots \triangleleft A_n = G. There is no requirement made that ''A''''i'' be a normal subgroup of ''G'', only a normal subgroup of ''A''''i'' +1. The quotient groups ''A''''i'' +1/''A'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric And Functional Analysis
''Geometric and Functional Analysis'' (''GAFA'') is a mathematical journal published by Birkhäuser, an independent division of Springer-Verlag. The journal is published approximately bi-monthly. The journal publishes papers on broad range of topics in geometry and analysis including geometric analysis, riemannian geometry, symplectic geometry, geometric group theory, non-commutative geometry, automorphic forms and analytic number theory, and others. ''GAFA'' is both an acronym and a part of the official full name of the journal. History ''GAFA'' was founded in 1991 by Mikhail Gromov and Vitali Milman. The idea for the journal was inspired by the long-running Israeli seminar series "Geometric Aspects of Functional Analysis" of which Vitali Milman had been one of the main organizers in the previous years. The journal retained the same acronym as the series to stress the connection between the two. Journal information The journal is reviewed cover-to-cover in Mathematical R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Group
In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a ''word hyperbolic group'' or ''Gromov hyperbolic group'', is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by . The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology (in particular the results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface, and more complex phenomena in three-dimensional topology), and combinatorial group theory. In a very influential (over 1000 citations ) chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others. Definition Let G be a finitely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Groups
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups , and finite Coxeter groups were classified in 1935 . Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–Moody algebras. Stan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Small Cancellation Theory
In the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm. Small cancellation methods are also used for constructing Tarski monsters, and for solutions of Burnside's problem. History Some ideas underlying the small cancellation theory go back to the work of Max Dehn in the 1910s. Dehn proved that fundamental groups of closed orientable surfaces of genus at least two have word problem solvable by what is now called Dehn's algorithm. His proof involved drawing the Cayley graph of such a group in the hyperbolic plane and performing curvature estimates via the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Experimental Mathematics (journal)
''Experimental Mathematics'' is a quarterly scientific journal of mathematics published by A K Peters, Ltd. until 2010, now by Taylor & Francis. The journal publishes papers in experimental mathematics, broadly construed. The journal's mission statement describes its scope as follows: "Experimental Mathematics publishes original papers featuring formal results inspired by experimentation, conjectures suggested by experiments, and data supporting significant hypotheses." the editor-in-chief is Sergei Tabachnikov ( ICERM, Brown University). History ''Experimental Mathematics'' was established in 1992 by David Epstein, Silvio Levy, and Klaus Peters. ''Experimental Mathematics'' was the first mathematical research journal to concentrate on experimental mathematics and to explicitly acknowledge its importance for mathematics as a general research field. The journal's launching was described as "something of a watershed". Indeed, the launching of the journal in 1992 was surrounded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometry & Topology
''Geometry & Topology'' is a peer-refereed, international mathematics research journal devoted to geometry and topology, and their applications. It is currently based at the University of Warwick, United Kingdom, and published by Mathematical Sciences Publishers, a nonprofit academic publishing organisation. It was founded in 1997Allyn Jackson The slow revolution of the free electronic journal Notices of the American Mathematical Society, vol. 47 (2000), no. 9, pp. 1053-1059 by a group of topologists who were dissatisfied with recent substantial rises in subscription prices of journals published by major publishing corporations. The aim was to set up a high-quality journal, capable of competing with existing journals, but with substantially lower subscription fees. The journal was open-access for its first ten years of existence and was available free to individual users, although institutions were required to pay modest subscription fees for both online access and for printed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit Group
Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 song by Paenda; see Austria in the Eurovision Song Contest 2019 * ''Limits'' (collection), a collection of short stories and essays by Larry Niven * The Limit, a Dutch band *The Limit, an episode from '' The Amazing World of Gumball'' Mathematics * Limit (mathematics), the value that a function or sequence "approaches" as the input or index approaches some value ** Limit of a function ***(ε,_δ)-definition of limit, formal definition of the mathematical notion of limit ** Limit of a sequence ** One-sided limit, either of the two limits of a function as a specified point is approached from below or from above * Limit of a net * Limit point, in topological spaces * Limit (category theory) ** Direct limit ** Inverse limit Other uses * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brigitte Servatius
Brigitte Irma Servatius (born 1954) is a mathematician specializing in matroids and structural rigidity. She is a professor of mathematics at Worcester Polytechnic Institute, and has been the editor-in-chief of the '' Pi Mu Epsilon Journal'' since 1999. Education and career Servatius is originally from Graz in Austria. As a student at an all-girl gymnasium in Graz that specialized in language studies rather than mathematics, her interest in mathematics was sparked by her participation in a national mathematical olympiad, and she went on to earn master's degrees in mathematics and physics at the University of Graz. She became a high school mathematics and science teacher in Leibnitz. She moved to the US in 1981, to begin doctoral studies at Syracuse University. She completed her Ph.D. in 1987, and joined the Worcester Polytechnic Institute faculty in the same year. Her dissertation, ''Planar Rigidity'', was supervised by Jack Graver. Contributions While still in Austria, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right-angled Artin Group
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles are also formed by the intersection of two planes. These are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection. ''Angle'' is also used to designate the measure of an angle or of a rotation. This measure is the ratio of the length of a circular arc to its radius. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. History and etymology The word ''angle'' comes from the Latin word ''angulus'', meaning "corner"; cognate words are the Gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HNN-extension
In mathematics, the HNN extension is an important construction of combinatorial group theory. Introduced in a 1949 paper ''Embedding Theorems for Groups'' by Graham Higman, Bernhard Neumann, and Hanna Neumann, it embeds a given group ''G'' into another group ''G' '', in such a way that two given isomorphic subgroups of ''G'' are conjugate (through a given isomorphism) in ''G' ''. Construction Let ''G'' be a group with presentation G = \langle S \mid R\rangle , and let \alpha\colon H \to K be an isomorphism between two subgroups of ''G''. Let ''t'' be a new symbol not in ''S'', and define :G*_ = \left \langle S,t \mid R, tht^=\alpha(h), \forall h\in H \right \rangle. The group G*_ is called the ''HNN extension of'' ''G'' ''relative to'' α. The original group G is called the ''base group'' for the construction, while the subgroups ''H'' and ''K'' are the ''associated subgroups''. The new generator ''t'' is called the ''stable letter''. Key properties Since the presentation f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]