HOME





Horvitz–Thompson Estimator
In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, is a method for estimating the total and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the target population. The Horvitz–Thompson estimator is frequently applied in survey analyses and can be used to account for missing data, as well as many sources of unequal selection probabilities. The method Formally, let Y_i, i = 1, 2, \ldots, n be an independent sample from n of N \ge n distinct strata with an overall mean \mu. Suppose further that \pi_i is the inclusion probability In statistics, in the theory relating to sampling from finite populations, the sampling probability (also known as inclusion probability) of an element or member of the population, is its probability of becoming part of the sample during the dra ... that a ran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inclusion Probability
In statistics, in the theory relating to sampling from finite populations, the sampling probability (also known as inclusion probability) of an element or member of the population, is its probability of becoming part of the sample during the drawing of a single sample. For example, in simple random sampling the probability of a particular unit i to be selected into the sample is :p_ = \frac = \frac where n is the sample size and N is the population size. Each element of the population may have a different probability of being included in the sample. The inclusion probability is also termed the "first-order inclusion probability" to distinguish it from the "second-order inclusion probability", i.e. the probability of including a pair of elements. Generally, the first-order inclusion probability of the ''i''th element of the population is denoted by the symbol π''i'' and the second-order inclusion probability that a pair consisting of the ''i''th and ''j''th element of the popul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sampling (statistics)
In this statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a population (statistics), statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population (in many cases, collecting the whole population is impossible, like getting sizes of all stars in the universe), and thus, it can provide insights in cases where it is infeasible to measure an entire population. Each observation measures one or more properties (such as weight, location, colour or mass) of independent objects or individuals. In survey sampling, weights can be applied to the data to adjust for the sample design, particularly in stratified samplin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

R (programming Language)
R is a programming language for statistical computing and Data and information visualization, data visualization. It has been widely adopted in the fields of data mining, bioinformatics, data analysis, and data science. The core R language is extended by a large number of R package, software packages, which contain Reusability, reusable code, documentation, and sample data. Some of the most popular R packages are in the tidyverse collection, which enhances functionality for visualizing, transforming, and modelling data, as well as improves the ease of programming (according to the authors and users). R is free and open-source software distributed under the GNU General Public License. The language is implemented primarily in C (programming language), C, Fortran, and Self-hosting (compilers), R itself. Preprocessor, Precompiled executables are available for the major operating systems (including Linux, MacOS, and Microsoft Windows). Its core is an interpreted language with a na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Benchmarking
In statistics, benchmarking is a method of using auxiliary information to adjust the sampling weights used in an estimation process, in order to yield more accurate estimates of totals. Suppose we have a population where each unit k has a "value" Y(k) associated with it. For example, Y(k) could be a wage of an employee k, or the cost of an item k. Suppose we want to estimate the sum Y of all the Y(k). So we take a sample of the k, get a sampling weight ''W''(''k'') for all sampled k, and then sum up W(k) \cdot Y(k) for all sampled k. One property usually common to the weights W(k) described here is that if we sum them over all sampled k, then this sum is an estimate of the total number of units k in the population (for example, the total employment, or the total number of items). Because we have a sample, this estimate of the total number of units in the population will differ from the true population total. Similarly, the estimate of total Y (where we sum W(k) \cdot Y(k) for a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Imputation (statistics)
In statistics, imputation is the process of replacing missing data with substituted values. When substituting for a data point, it is known as "unit imputation"; when substituting for a component of a data point, it is known as "item imputation". There are three main problems that missing data causes: missing data can introduce a substantial amount of bias, make the handling and analysis of the data more arduous, and create reductions in efficiency. Because missing data can create problems for analyzing data, imputation is seen as a way to avoid pitfalls involved with listwise deletion of cases that have missing values. That is to say, when one or more values are missing for a case, most statistical packages default to discarding any case that has a missing value, which may introduce bias or affect the representativeness of the results. Imputation preserves all cases by replacing missing data with an estimated value based on other available information. Once all missing values ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Resampling (statistics)
In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: # Permutation tests (also re-randomization tests) for generating counterfactual samples # Bootstrapping # Cross validation # Jackknife Permutation tests Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis. Bootstrap Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio, correlation coefficient or regression coefficient. It has been called the plug-in principle,Logan, J. David and Wolesensky, Willian R. Mathematical methods in biology. Pure and Ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bootstrapping (statistics)
Bootstrapping is a procedure for estimating the distribution of an estimator by resampling (often with replacement) one's data or a model estimated from the data. Bootstrapping assigns measures of accuracy ( bias, variance, confidence intervals, prediction error, etc.) to sample estimates.software
This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods. Bootstrapping estimates the properties of an estimand (such as its ) by measuring those properties when sampling from an approximating distribution. One standard choice for an approximating distributi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Probability
Bayesian probability ( or ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown. In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability. Bayesian probability belongs to the category of evidential probabilities; to evaluate the probability of a hypothesis, the Bayesian probabilist specifies a prior probability. This, in turn, is then updated to a posterior probability in the light of new, relevant data (evidence). The Bayesian interpretation provides a standard set of procedur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel G
Daniel commonly refers to: * Daniel (given name), a masculine given name and a surname * List of people named Daniel * List of people with surname Daniel * Daniel (biblical figure) * Book of Daniel, a biblical apocalypse, "an account of the activities and visions of Daniel" Daniel may also refer to: Arts and entertainment Literature * ''Daniel'' (Old English poem), an adaptation of the Book of Daniel * ''Daniel'', a 2006 novel by Richard Adams * ''Daniel'' (Mankell novel), 2007 Music * "Daniel" (Bat for Lashes song) (2009) * "Daniel" (Elton John song) (1973) * "Daniel", a song from '' Beautiful Creature'' by Juliana Hatfield * ''Daniel'' (album), a 2024 album by Real Estate Other arts and entertainment * ''Daniel'' (1983 film), by Sidney Lumet * ''Daniel'' (2019 film), a Danish film * Daniel (comics), a character in the ''Endless'' series Businesses * Daniel (department store), in the United Kingdom * H & R Daniel, a producer of English porcelain between 1827 and 184 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independence (probability Theory)
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two event (probability theory), events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called Pairwise independence, pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]