Higher Topos Theory
''Higher Topos Theory'' is a treatise on the theory of ∞-categories written by American mathematician Jacob Lurie. In addition to introducing Lurie's new theory of ∞-topoi, the book is widely considered foundational to higher category theory. Since 2018, Lurie has been transferring the contents of ''Higher Topos Theory'' (along with new material) to Kerodon, an "online resource for homotopy-coherent mathematics" inspired by the Stacks Project. Topics ''Higher Topos Theory'' covers two related topics: ∞-categories and ∞-topoi (which are a special case of the former). The first five of the book's seven chapters comprise a rigorous development of general ∞-category theory in the language of quasicategories, a special class of simplicial set which acts as a model for ∞-categories. The path of this development largely parallels classical category theory, with the notable exception of the ∞-categorical Grothendieck construction; this correspondence, which Lurie refers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
∞-categories
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. The study of such generalizations is known as higher category theory. Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of two given morphisms are related t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacob Lurie
Jacob Alexander Lurie (born December 7, 1977) is an American mathematician who is a professor at the Institute for Advanced Study. Lurie is a 2014 MacArthur Fellow. Life When he was a student in the Science, Mathematics, and Computer Science Magnet Program at Montgomery Blair High School, Lurie took part in the International Mathematical Olympiad, where he won a gold medal with a perfect score in 1994. In 1996 he took first place in the Westinghouse Science Talent Search and was featured in a front-page story in the ''Washington Times''. Lurie earned his bachelor's degree in mathematics from Harvard College in 2000 and was awarded in the same year the Morgan Prize for his undergraduate thesis on Lie algebras. He earned his Ph.D. from the Massachusetts Institute of Technology under supervision of Michael J. Hopkins, in 2004 with a thesis on derived algebraic geometry. In 2007, he became associate professor at MIT, and in 2009 he became professor at Harvard University. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higher Category Theory
In mathematics, higher category theory is the part of category theory at a ''higher order'', which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Higher category theory is often applied in algebraic topology (especially in homotopy theory), where one studies algebraic invariants of spaces, such as their fundamental weak ∞-groupoid. Strict higher categories An ordinary category has objects and morphisms, which are called 1-morphisms in the context of higher category theory. A 2-category generalizes this by also including 2-morphisms between the 1-morphisms. Continuing this up to ''n''-morphisms between (''n'' − 1)-morphisms gives an ''n''-category. Just as the category known as Cat, which is the category of small categories and functors is actually a 2-category with natural transformations as its 2-morphisms, the category ''n''-Cat of (small) ''n''-categories is actu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stacks Project
The Stacks Project is an open source collaborative mathematics textbook writing project with the aim to cover "algebraic stacks and the algebraic geometry needed to define them". , the book consists of 115 chapters (excluding the license and index chapters) spreading over 7500 pages. The maintainer of the project, who reviews and accepts the changes, is Aise Johan de Jong. See alsoKerodona Stacks project inspired online textbook on categorical homotopy theory maintained by Jacob Lurie Jacob Alexander Lurie (born December 7, 1977) is an American mathematician who is a professor at the Institute for Advanced Study. Lurie is a 2014 MacArthur Fellow. Life When he was a student in the Science, Mathematics, and Computer Science ... References External linksProject website*Latest from the Stacks Project(as of 2013) (Accessed 2020-04-01) Mathematics textbooks {{mathematics-lit-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplicial Set
In mathematics, a simplicial set is an object composed of ''simplices'' in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a "well-behaved" topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grothendieck Construction
The Grothendieck construction (named after Alexander Grothendieck) is a construction used in the mathematical field of category theory. Definition Let F\colon \mathcal \rightarrow \mathbf be a functor from any small category to the category of small categories. The Grothendieck construction for F is the category \Gamma(F) (also written \textstyle\int_ F, \textstyle\mathcal \int F or F \rtimes \mathcal), with * objects being pairs (c,x), where c\in \operatorname(\mathcal) and x\in \operatorname(F(c)); and * morphisms in \operatorname_((c_1,x_1),(c_2,x_2)) being pairs (f, g) such that f: c_1 \to c_2 in \mathcal, and g: F(f)(x_1) \to x_2 in F(c_2). Composition of morphisms is defined by (f,g) \circ (f',g') = (f \circ f', g \circ F(f)(g')). Slogan "The Grothendieck construction takes structured, tabulated data and flattens it by throwing it all into one big space. The projection functor is then tasked with remembering which box each datum originally came from." Example If G is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topoi
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formaliz ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Categories
In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called ' weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes (derived category theory). The concept was introduced by . In recent decades, the language of model categories has been used in some parts of algebraic ''K''-theory and algebraic geometry, where homotopy-theoretic approaches led to deep results. Motivation Model categories can provide a natural setting for homotopy theory: the category of topological spaces is a model category, with the homotopy corresponding to the usual theory. Similarly, objects that are thought of as spaces often admit a model category structure, such as the category of simplicial sets. Another model category is the category of chain complexes of ''R''-modules for a commutative ring ''R''. Homotopy the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simplicially Enriched Category
In mathematics, a simplicially enriched category, is a category (mathematics), category enriched category, enriched over the category of simplicial sets. Simplicially enriched categories are often also called, more ambiguously, simplicial categories; the latter term however also applies to simplicial objects in Cat (the category of small categories). Simplicially enriched categories can, however, be identified with simplicial objects in Cat whose object part is constant, or more precisely, whose all face and degeneracy maps are bijective on objects. Simplicially enriched categories can model (∞, 1)-category, (∞, 1)-categories, but the dictionary has to be carefully built. Namely many notions, limits for example, are different from the limits in the sense of enriched category theory. References * * External links * {{Category theory Category theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |