HOME





Hierarchical Classification
Hierarchical classification is a system of grouping things according to a hierarchy. In the field of machine learning, hierarchical classification is sometimes referred to as instance space decomposition, which splits a complete multi-class classification, multi-class problem into a set of smaller classification problems. See also * Deductive classifier * Cascading classifiers * Faceted classification References External links Hierarchical Classification – a useful approach for predicting thousands of possible categories
Classification algorithms {{AI-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classification
Classification is the activity of assigning objects to some pre-existing classes or categories. This is distinct from the task of establishing the classes themselves (for example through cluster analysis). Examples include diagnostic tests, identifying spam emails and deciding whether to give someone a driving license. As well as 'category', synonyms or near-synonyms for 'class' include 'type', 'species', 'order', 'concept', 'taxon', 'group', 'identification' and 'division'. The meaning of the word 'classification' (and its synonyms) may take on one of several related meanings. It may encompass both classification and the creation of classes, as for example in 'the task of categorizing pages in Wikipedia'; this overall activity is listed under taxonomy. It may refer exclusively to the underlying scheme of classes (which otherwise may be called a taxonomy). Or it may refer to the label given to an object by the classifier. Classification is a part of many different kinds of activ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multi-class Classification
In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, peach, orange, or an apple is a multiclass classification problem, with four possible classes (banana, peach, orange, apple), while deciding on whether an image contains an apple or not is a binary classification problem (with the two possible classes being: apple, no apple). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies. Multiclass classification should not be confused with multi-label classification, where multiple labels are to be predicted for eac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deductive Classifier
A deductive classifier is a type of artificial intelligence inference engine. It takes as input a set of declarations in a frame language about a domain such as medical research or molecular biology. For example, the names of Class hierarchy, classes, sub-classes, properties, and restrictions on allowable values. The classifier determines if the various declarations are logically consistent and if not will highlight the specific inconsistent declarations and the inconsistencies among them. If the declarations are consistent the classifier can then assert additional information based on the input. For example, it can add information about existing classes, create additional classes, etc. This differs from traditional inference engines that trigger off of IF-THEN conditions in rules. Classifiers are also similar to Automated theorem proving, theorem provers in that they take as input and produce output via first-order logic. Classifiers originated with KL-ONE frame languages. They are i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cascading Classifiers
Cascading is a particular case of ensemble learning based on the concatenation of several classifiers, using all information collected from the output from a given classifier as additional information for the next classifier in the cascade. Unlike voting or stacking ensembles, which are multiexpert systems, cascading is a multistage one. Cascading classifiers are trained with several hundred "positive" sample views of a particular object and arbitrary "negative" images of the same size. After the classifier is trained it can be applied to a region of an image and detect the object in question. To search for the object in the entire frame, the search window can be moved across the image and check every location with the classifier. This process is most commonly used in image processing for object detection and tracking, primarily facial detection and recognition. The first cascading classifier was the face detector of Viola and Jones (2001). The requirement for this classifier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faceted Classification
A faceted classification is a classification scheme used in organizing knowledge into a systematic order. A faceted classification uses semantic categories, either general or subject-specific, that are combined to create the full classification entry. Many library classification systems use a combination of a fixed, enumerative taxonomy of concepts with subordinate facets that further refine the topic. Definition There are two primary types of classification used for information organization: enumerative and faceted. An enumerative classification contains a full set of entries for all concepts. A faceted classification system uses a set of semantically cohesive categories that are combined as needed to create an expression of a concept. In this way, the faceted classification is not limited to already defined concepts. While this makes the classification quite flexible, it also makes the resulting expression of topics complex. To the extent possible, facets represent "clearly d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]